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ABSTRACT

In this paper, we introduce supergaussian generalized autoregres-
sive conditional heteroscedasticity (GARCH) models for speech
signals in the short-time Fourier transform (STFT) domain. We
address the problem of speech enhancement, and show that esti-
mating the variances of the STFT expansion coefficients based on
GARCH models yields higher speech quality than by using the
decision-directed method, whether the fidelity criterion is mini-
mum mean-squared error (MMSE) of the spectral coefficients or
MMSE of the log-spectral amplitude (LSA). Furthermore, while a
Gaussian model is inferior to Gamma and Laplacian models when
estimating the variances by the decision-directed method, a Gaus-
sian model is superior when using the GARCH modeling method.
This facilitates MMSE-LSA estimation, while taking into consid-
eration the heavy-tailed distribution.

1. INTRODUCTION

Speech modeling in the short-time Fourier transform (STFT) do-
main underlies the design of many speech enhancement sys-
tems [1]. The Gaussian model, proposed by Ephraim and
Malah [2], describes the individual STFT expansion coefficients
of the speech signal as zero-mean statistically independent Gaus-
sian random variables. It enables to derive useful minimum mean-
squared error (MMSE) estimators for the short-term spectral am-
plitude (STSA), as well as the log-spectral amplitude (LSA) [2,3].
Porter and Boll [4] proposed to compute the optimal estimator di-
rectly from the speech data, rather than from a parametric model
of the speech statistics. They argued that a priori speech spec-
tra do not have a Gaussian distribution, but Gamma-like distribu-
tion. Martin [5] considered a Gamma speech model, under which
the real and imaginary parts of the STFT coefficients are mod-
eled as independent and identically distributed (iid) Gamma ran-
dom variables. He assumed that distinct expansion coefficients are
statistically independent, and derived their MMSE estimators. He
showed that the Gamma model yields higher improvement in the
segmental SNR than the Gaussian model.

Recently, we introduced a novel approach for statistically
modeling speech signals in the STFT domain [6]. This approach
is based on generalized autoregressive conditional heteroscedas-
ticity (GARCH) modeling, which is widely-used for modeling the
volatility of financial time-series such as exchange rates and stock
returns [7]. Similar to financial time-series, speech signals in the
STFT domain are characterized by heavy tailed distributions and
volatility clustering. Specifically, when observing a time series
of successive expansion coefficients in a fixed frequency bin, the
expansion coefficients are clustered in the sense that large magni-
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tudes tend to follow large magnitudes and small magnitudes tend
to follow small magnitudes, while the phase is unpredictable.

This paper summarizes the main results of [8]. We present
supergaussian GARCH models for speech signals in the STFT
domain. We address the problem of spectral enhancement of
noisy speech, and consider eight different speech enhancement
algorithms, as summarized in Table 1. The statistical model is
either Gaussian, Gamma or Laplacian; the spectral variance is
estimated based on either the proposed GARCH models or the
decision-directed method of Ephraim and Malah [2]; the fidelity
criteria include MMSE of the STFT coefficients and MMSE of the
LSA. We show that estimating the variance by the GARCH model-
ing method yields lower log-spectral distortion (LSD) and higher
Perceptual Evaluation of Speech Quality (PESQ) scores (ITU-T
P.862) than by using the decision-directed method. Furthermore,
while a Gaussian model is inferior to Gamma and Laplacian mod-
els if the speech variance is estimated by the decision-directed
method, a Gaussian model is superior in the case speech variance
is estimated by using the GARCH modeling method. This facili-
tates MMSE-LSA estimation, while taking into consideration the
heavy-tailed distribution. Speech spectrograms and informal lis-
tening tests confirm that the quality of the enhanced speech ob-
tained by using the GARCH modeling method is better than that
obtainable by using the decision-directed method.

In Sec. 2, we introduce the statistical models. In Sec. 3, we
address the speech enhancement problem. In Sec. 4, we derive
estimators for the spectral variances. Finally, in Sec. 5, we evalu-
ate the performances of MMSE and MMSE-LSA estimators under
Gaussian, Gamma and Laplacian models.

2. STATISTICAL MODELS

Let  and d denote speech and uncorrelated additive noise signals,
and let y = x + d represent the observed signal. Applying the
STFT to the observed signal, we have in the time-frequency do-
main

Yir = Xk + Dk (D

where t is the time frame index (¢ = 0,1,...) and k is the
frequency-bin index (k = 0,1,..., K — 1). Let HEF and Hi*
denote, respectively, hypotheses of signal absence and presence in
the noisy spectral coefficient Yy, and let A, =5 {|1Xe|? | H{*}
denote the variance of a speech spectral coefficient Xy, under
H f’“ Then, the variances { A} are hidden from direct observa-
tion, in the sense that even under perfect conditions of zero noise,
their values are not directly observable. Therefore, our approach is
to assume that {\¢x} themselves are random variables, and to in-
troduce conditional variances which are estimated from the avail-
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Table 1. List of the Evaluated Speech Enhancement Algorithms.

Algorithm | Statistical Variance Fidelity
# Model Estimation Criterion
1 Gaussian GARCH MMSE
2 Gamma GARCH MMSE
3 Laplacian GARCH MMSE
4 Gaussian  Decision-Directed MMSE
5 Gamma Decision-Directed MMSE
6 Laplacian  Decision-Directed MMSE
7 Gaussian GARCH MMSE-LSA
8 Gaussian  Decision-Directed MMSE-LSA

able information (e.g., the clean spectral coefficients through frame
t — 1, or the noisy spectral coefficients through frame ).

Let Xy ={Xwu |t=0,...,7, k=0,..., K — 1} represent
the set of clean speech spectral coefficients up to frame 7, and let
Atko|r S E {I1Xu? | HiF, X{ } denote the conditional variance
of Xy, under Hi* given XJ. Our statistical models in the STFT
domain rely on the following set of assumptions:

1. The speech spectral coefficients { Xy« } are generated by

Xk = Vi Vir 2

where {Vtk |H5k} are identically zero, and {Vtk | ka}
are statistically independent complex random variables
with zero mean, unit variance, and iid real and imaginary
parts:

H*: E{Vi} =0, E{|Vi|’} =1,
H¥: Vi =0.

2. The probability density function (pdf) of Vi under Ht* is
determined by the specific statistical model. Let Vg =
R{Vir} and Vi = S{Vir} denote, respectively, the real
and imaginary parts of V. Let p (Ve | Hi*) denote the
pdf of Vyux (p € {R, I}) under Hi*. Then, for a Gaussian
model

1
p(Vour| HY) = e (-VZ),  ®

for a Gamma model

wy_ o v6 3
p(v””“' i ) N eXp( \EV””“) ’
“)

and for a Laplacian model
p (Vo | HY) =exp(=2[Vu) . (9)

3. The conditional variance Axj¢—1, referred to as the one-
frame-ahead conditional variance, is a random process
which evolves as a GARCH(1, 1) process:

Atrft—1 = Amin + 1| Xe1k)* 4+ 6 (M- 1kt—2 — Amin)
(6)
where
Amin >0, >0,

§>0, pu+d<1l (D)

are the standard constraints imposed on the parameters of
the GARCH model [7]. The parameters p and § are, re-
spectively, the moving average and autoregressive parame-
ters of the GARCH(1,1) model, and A, is a lower bound
on the variance of Xy, under H1¥.

The first assumption implies that the speech spectral coeffi-
cients { Xyx | H{*} are conditionally zero-mean statistically inde-
pendent random variables given their variances {A\;;}. The real
and imaginary parts of X; under H? are conditionally iid random
variables given A¢f.

3. SPECTRAL ENHANCEMENT OF NOISY SPEECH

In this section, we address the problem of spectral enhancement of
noisy speech under the proposed statistical models. Let

@ (X, Ko ) = |o(%an) — 3(X0)| ®)

denote a distortion measure between X and its estimate
Xk, where g(X) and §(X) are specific functions of X (e.g.,
X, |X|, log | X|, e¥“%). Let psx, denote an estimate for the signal
presence probability, and let At denote an estimate for A¢. Then,
the design of a particular estimator for X requires the following
specifications:

e Functions g(X) and g(X ), which determine the fidelity cri-
terion of the estimator.

e A conditional pdf p ( X | Ak, Hi*) for Xyi under H{*
given its variance A, which determines the statistical
model. .

e Estimators )\ and o, for the speech and noise spectral
variances, respectively.

e An estimator py, for the signal presence probability.

In this work we assume knowledge of the noise variance o2,
which in practice can be estimated by using the Minima Con-
trolled Recursive Averaging approach [9]. Furthermore, to sim-
plify the comparisons between the speech enhancement algo-
rithms, we focus on implementations that assume speech pres-
ence (i.e., pi, = 1) whenever 20 log,, | Xw| > €, where ¢ =
max {20 log,, | Xtk|} — 50 confines the dynamic range of the

log-spectrum to 50 dB. In the other time-frequency bins, p: is
set to zero. We consider MMSE estimators for the spectral coeffi-
cients under Gaussian, Gamma and Laplacian models [5, 10], and
MMSE-LSA estimator under a Gaussian model [1,3]. An MMSE
estimator is obtained by using the functions

Xk, under HIF
Gumin Yir, under HE®

where Gmin << 1 represents a constant attenuation factor. An
MMSE-LSA estimator is obtained by using the functions

- A _ log | X s, under H*,
g(th) = lOg ‘th|a g(ka) = {loi |(G:1€1‘n|}/tk|) under H%k
(10

Estimators X i, which minimize the expected distortion given pq,
Ak and Yk, are calculated from

9(Xun) = E{g(xtk)\m,&k,m}
= puE {g(xtk) \ HY* Ak, Yo }

+(1fﬁtk)E{g(th) ‘Hék, Ytk} A
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Table 2. Log-Spectral Distortion and PESQ Scores Obtained by Using Different Variance Estimation Methods (GARCH Modeling Method
vs. Decision-Directed Method), Statistical Models (Gaussian vs. Gamma vs. Laplacian) and Fidelity Criteria (MMSE vs. MMSE-LSA).

Input GARCH modeling method Decision-Directed method
SNR Gaussian Gamma Laplacian Gaussian Gamma Laplacian
[dB] | MMSE MMSE-LSA MMSE MMSE MMSE MMSE-LSA MMSE MMSE
0 7.717 4.85 8.03 7.91 18.89 11.35 17.76 18.14
Log- 5 5.78 4.04 6.93 6.45 17.29 11.03 15.73 16.26
Spectral 10 4.14 3.27 5.35 4.85 13.87 9.13 11.83 12.48
Distortion 15 2.50 2.25 3.23 292 9.19 6.05 6.95 7.59
20 1.30 1.28 1.55 1.44 4.88 3.13 2.88 3.34
0 2.52 2.55 247 2.48 1.91 221 1.98 1.96
5 297 2.98 2.90 291 2.30 2.61 2.38 2.36
PESQ 10 3.37 3.38 3.28 3.31 2.70 2.99 277 2.75
Scores 15 3.67 3.69 3.59 3.62 3.09 3.31 3.17 3.15
20 3.88 3.89 3.83 3.85 3.53 3.64 3.62 3.60

The speech spectral variance is estimated based on the proposed
GARCH models, as described in following section.

4. VARIANCE ESTIMATION USING GARCH MODELS

The speech variance estimation follows the rational of Kalman fil-
tering. We start with an estimate j\t k|¢—1 that relies on the noisy
observations up to frame ¢ — 1, and “update” the variance by using
the additional information Y;,. Then, the variance is “propagated”
ahead in time to obtain a conditional variance estimate at frame
t 4+ 1 from the information available at frame ¢. The propagation
and update steps are iterated, to recursively estimate the speech
variances as new data arrive.

Assuming an estimate A.|,— for the one-frame-ahead con-
ditional variance of X3y, is available, an estimate for .|, can be
obtained by calculating its conditional mean under H1* given Yy
and j\tk‘t,l. By definition, Akje = [Xex|® = Xpu + Xiup-
Hence,

Sge= > E{Xpu [H* Arjeer Yo }
pe{R,I}

(12)

Defining the a priori and a posteriori signal-to-noise ratios
(SNRyg), respectively, by

2
A /\tk\t71 AN thk
gtk\tfl - p) s Vptk = 2 (13)
Otk Otk

we can write for Y,¢ # 0

E {thk ‘ka  Atkjt—1 ,thk} = Gsp (étk|t—17'7ptk) Yk

(14)
where the specific expression for Gsp (&,7,), representing the
MMSE gain function in the spectral power domain, depends on
the particular statistical model [8]. Equation (14) does not hold in
the case Y, — 0, since Gsp (&, v,) — oo asy, — 0, and the
conditional variance of X, is generally not zero. However, we
can define a function f(\, 0, Y,?) such that

B{ X0 [ HI* Ao Yo } = F (Mege-1, 0%, V)
(1s)

for all Y, [8]. Substituting (15) into (12), we obtain the update
step of the recursive estimation given by

5\zk|t =f (S\tklt—lvgtzkaylgtk)‘f'f (th\t—lvo'?kvyftk) . (16)

To formulate the propagation step, we assume that we are
given at frame ¢ — 1 an estimate S\t,lyk‘tﬁ for the conditional
variance of X;_1 x, which has been obtained from the noisy mea-
surements up to frame ¢ — 2. Then a recursive MMSE estimate for
Atk|¢—1 can be obtained by calculating its conditional mean under

t—1,k _. 1 .
Hy given A\y_1 k¢—2 and Yy 1 :

Airji—1 = E {)\tku—l

H7Y Az Yiowe o (17)
Substituting (6) into (17) and employing (12), we obtain
Atklt—1 = Amin + 1 Ae—1,5)—1 +0 (thl,k\t72 - )\min) . (18)

Equation (18) is the propagation step, since the conditional vari-
ance estimates are propagated ahead in time to obtain a condi-
tional variance estimate at frame ¢ from the information available
at frame ¢ — 1. The propagation and update steps are iterated as
new data arrive, following the rational of Kalman filtering.

5. EXPERIMENTAL RESULTS AND DISCUSSION

The performances of the MMSE spectral and LSA estimators were
evaluated under Gaussian, Gamma and Laplacian models, while
the speech variance is estimated by using either the GARCH mod-
eling or the decision-directed method. The evaluation includes two
objective quality measures, and informal listening tests. The first
quality measure is log-spectral distortion, in dB, which is defined
by

1 N 2
LSD= | 3" (20 log,o | Xex| — 20 logy, |th|)
i,
€H1
19)
where H1 = {tk | 20 log,, | X¢x| > €} denotes the set of time-
frequency bins which contain the speech signal, |H1| denotes its
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Fig. 1. Speech spectrograms and waveforms. (a) Original clean speech signal: “Now forget all this other.”; (b) noisy signal (SNR = 5
dB, LSD = 13.75 dB, PESQ= 1.76); (c) speech reconstructed by using the decision-directed method, a Gaussian model and MMSE-LSA
estimator (LSD = 9.00 dB, PESQ = 2.57); (d) speech reconstructed by using the GARCH modeling method, a Gaussian model and

MMSE-LSA estimator (LSD = 3.59 dB, PESQ = 2.88).

cardinality, and € = max {20 log, | Xtx|} — 50 confines the dy-

namic range of the log-spectrum to 50 dB. The second quality
measure is the PESQ score (ITU-T P.862).

The speech signals, taken from the TIMIT database, include
20 different utterances from 20 different speakers, half male and
half female. The signals are sampled at 16 kHz, degraded by white
Gaussian noise with SNRs in the range [0, 20] dB, and transformed
into the STFT domain using half overlapping Hamming analysis
windows of 32 milliseconds length. Maximum-likelihood esti-
mates of the model parameters (i.e., fi, $ and Xnin) are calcu-
lated independently for each speaker from the clean signal of that
speaker, as described in [8]. Eight different speech enhancement
algorithms are then applied to each noisy speech signal, as sum-
marized in Table 1.

Table 2 shows the results of the LSD and PESQ scores ob-
tained by using the different algorithms for various SNR levels.
The results show that:

e MMSE-LSA estimators yield lower LSD and higher PESQ
scores than MMSE spectral estimators, whether the vari-
ance is estimated by using the GARCH modeling method
or the decision-directed method.

e An MMSE spectral estimator derived under a Gamma sta-
tistical model performs better than that derived under Gaus-
sian or Laplacian models, but only if the speech variance is
estimated by the decision-directed method. However, if the
speech variance is estimated by using the GARCH model-
ing method, a Gaussian model is preferable to Gamma and
Laplacian models.

e Speech variance estimation based on GARCH modeling
yields lower LSD and higher PESQ scores than those ob-
tained by using the decision-directed method.

e The best performance is obtained when using the GARCH
modeling method, a Gaussian model and an MMSE-LSA
estimator. The worst performance is obtained when us-
ing the decision-directed method, a Gaussian model and an
MMSE spectral estimator.

A subjective study of speech spectrograms and informal listen-
ing tests confirm that the quality of the enhanced speech obtained
by using the GARCH modeling method, the MMSE-LSA estima-
tor and the Gaussian model is significantly better than that ob-

tainable by using the decision-directed method. Figure 1 demon-
strates the spectrograms and waveforms of a clean signal, noisy
signal (SNR = 5 dB) and enhanced speech signals obtained by
using the GARCH modeling and the decision-directed methods. It
shows that weak speech components are better preserved by using
the GARCH modeling method than by using the decision-directed
method.
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