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ABSTRACT

In this paper, we introduce supergaussian generalized autoregres-
sive conditional heteroscedasticity (GARCH) models for speech
signals in the short-time Fourier transform (STFT) domain. We
address the problem of speech enhancement, and show that esti-
mating the variances of the STFT expansion coefficients based on
GARCH models yields higher speech quality than by using the
decision-directed method, whether the fidelity criterion is mini-
mum mean-squared error (MMSE) of the spectral coefficients or
MMSE of the log-spectral amplitude (LSA). Furthermore, while a
Gaussian model is inferior to Gamma and Laplacian models when
estimating the variances by the decision-directed method, a Gaus-
sian model is superior when using the GARCH modeling method.
This facilitates MMSE-LSA estimation, while taking into consid-
eration the heavy-tailed distribution.

1. INTRODUCTION

Speech modeling in the short-time Fourier transform (STFT) do-
main underlies the design of many speech enhancement sys-
tems [1]. The Gaussian model, proposed by Ephraim and
Malah [2], describes the individual STFT expansion coefficients
of the speech signal as zero-mean statistically independent Gaus-
sian random variables. It enables to derive useful minimum mean-
squared error (MMSE) estimators for the short-term spectral am-
plitude (STSA), as well as the log-spectral amplitude (LSA) [2,3].
Porter and Boll [4] proposed to compute the optimal estimator di-
rectly from the speech data, rather than from a parametric model
of the speech statistics. They argued that a priori speech spec-
tra do not have a Gaussian distribution, but Gamma-like distribu-
tion. Martin [5] considered a Gamma speech model, under which
the real and imaginary parts of the STFT coefficients are mod-
eled as independent and identically distributed (iid) Gamma ran-
dom variables. He assumed that distinct expansion coefficients are
statistically independent, and derived their MMSE estimators. He
showed that the Gamma model yields higher improvement in the
segmental SNR than the Gaussian model.

Recently, we introduced a novel approach for statistically
modeling speech signals in the STFT domain [6]. This approach
is based on generalized autoregressive conditional heteroscedas-
ticity (GARCH) modeling, which is widely-used for modeling the
volatility of financial time-series such as exchange rates and stock
returns [7]. Similar to financial time-series, speech signals in the
STFT domain are characterized by heavy tailed distributions and
volatility clustering. Specifically, when observing a time series
of successive expansion coefficients in a fixed frequency bin, the
expansion coefficients are clustered in the sense that large magni-
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end to follow large magnitudes and small magnitudes tend
w small magnitudes, while the phase is unpredictable.
is paper summarizes the main results of [8]. We present
aussian GARCH models for speech signals in the STFT
. We address the problem of spectral enhancement of
peech, and consider eight different speech enhancement

hms, as summarized in Table 1. The statistical model is
Gaussian, Gamma or Laplacian; the spectral variance is
ted based on either the proposed GARCH models or the
n-directed method of Ephraim and Malah [2]; the fidelity
include MMSE of the STFT coefficients and MMSE of the
e show that estimating the variance by the GARCH model-

thod yields lower log-spectral distortion (LSD) and higher
tual Evaluation of Speech Quality (PESQ) scores (ITU-T
than by using the decision-directed method. Furthermore,
Gaussian model is inferior to Gamma and Laplacian mod-

he speech variance is estimated by the decision-directed
, a Gaussian model is superior in the case speech variance
ated by using the GARCH modeling method. This facili-
MSE-LSA estimation, while taking into consideration the

tailed distribution. Speech spectrograms and informal lis-
tests confirm that the quality of the enhanced speech ob-
by using the GARCH modeling method is better than that
ble by using the decision-directed method.
Sec. 2, we introduce the statistical models. In Sec. 3, we
s the speech enhancement problem. In Sec. 4, we derive
tors for the spectral variances. Finally, in Sec. 5, we evalu-
performances of MMSE and MMSE-LSA estimators under
an, Gamma and Laplacian models.

2. STATISTICAL MODELS

nd d denote speech and uncorrelated additive noise signals,
y = x + d represent the observed signal. Applying the

to the observed signal, we have in the time-frequency do-

Ytk = Xtk + Dtk (1)

t is the time frame index (t = 0, 1, . . .) and k is the
cy-bin index (k = 0, 1, . . . , K − 1). Let Htk

0 and Htk
1

, respectively, hypotheses of signal absence and presence in

sy spectral coefficient Ytk, and let λtk
�
= E

�|Xtk|2 |Htk
1

�

the variance of a speech spectral coefficient Xtk under
hen, the variances {λtk} are hidden from direct observa-
the sense that even under perfect conditions of zero noise,
lues are not directly observable. Therefore, our approach is
me that {λtk} themselves are random variables, and to in-
conditional variances which are estimated from the avail-



Table 1. List of the Evaluated Speech Enhancement Algorithms.
Algorithm Statistical Variance Fidelity

# Model Estimation Criterion
1 Gaussian GARCH MMSE
2 Gamma GARCH MMSE
3 Laplacian GARCH MMSE
4 Gaussian Decision-Directed MMSE
5 Gamma Decision-Directed MMSE
6 Laplacian Decision-Directed MMSE
7 Gaussian GARCH MMSE-LSA
8 Gaussian Decision-Directed MMSE-LSA

able information (e.g., the clean spectral coefficients through frame
t − 1, or the noisy spectral coefficients through frame t).

Let X τ
0 = {Xtk | t = 0, . . . , τ, k = 0, . . . , K − 1} represent

the set of clean speech spectral coefficients up to frame τ , and let

λtk|τ
�
= E

�|Xtk|2 |Htk
1 , X τ

0

�
denote the conditional variance

of Xtk under Htk
1 given X τ

0 . Our statistical models in the STFT
domain rely on the following set of assumptions:

1. The speech spectral coefficients {Xtk} are generated by

Xtk =
�

λtk Vtk (2)

where
�
Vtk |Htk

0

�
are identically zero, and

�
Vtk |Htk

1

�
are statistically independent complex random variables
with zero mean, unit variance, and iid real and imaginary
parts:

Htk
1 : E {Vtk} = 0 , E

�|Vtk|2
�

= 1 ,
Htk

0 : Vtk = 0 .

2. The probability density function (pdf) of Vtk under Htk
1 is

determined by the specific statistical model. Let VRtk =
�{Vtk} and VItk = �{Vtk} denote, respectively, the real
and imaginary parts of Vtk. Let p

�
Vρtk |Htk

1

�
denote the

pdf of Vρtk (ρ ∈ {R, I}) under Htk
1 . Then, for a Gaussian

model

p
�

Vρtk | Htk
1

�
=

1√
π

exp
�−V 2

ρtk

�
, (3)

for a Gamma model

p
�

Vρtk | Htk
1

�
=

4
√

6

2
�

2π|Vρtk|
exp

�
−
�

3

2
|Vρtk|

	
,

(4)
and for a Laplacian model

p
�

Vρtk | Htk
1

�
= exp (−2 |Vρtk|) . (5)

3. The conditional variance λtk|t−1, referred to as the one-
frame-ahead conditional variance, is a random process
which evolves as a GARCH(1, 1) process:

λtk|t−1 = λmin + µ |Xt−1,k|2 + δ
�
λt−1,k|t−2 − λmin

�
(6)

where

λmin > 0 , µ ≥ 0 , δ ≥ 0 , µ + δ < 1 (7)
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are the standard constraints imposed on the parameters of
the GARCH model [7]. The parameters µ and δ are, re-
spectively, the moving average and autoregressive parame-
ters of the GARCH(1,1) model, and λmin is a lower bound
on the variance of Xtk under Htk

1 .
e first assumption implies that the speech spectral coeffi-
Xtk |Htk

1

�
are conditionally zero-mean statistically inde-

t random variables given their variances {λtk}. The real
aginary parts of Xt under Ht

1 are conditionally iid random
es given λtk.

PECTRAL ENHANCEMENT OF NOISY SPEECH

section, we address the problem of spectral enhancement of
peech under the proposed statistical models. Let

d
�
Xtk, X̂tk

�
=



g(X̂tk) − g̃(Xtk)




2 (8)

a distortion measure between Xtk and its estimate
here g(X) and g̃(X) are specific functions of X (e.g.,
|, log |X|, ej�X ). Let p̂tk denote an estimate for the signal
ce probability, and let λ̂tk denote an estimate for λtk. Then,
ign of a particular estimator for Xtk requires the following
cations:
Functions g(X) and g̃(X), which determine the fidelity cri-
terion of the estimator.
A conditional pdf p

�
Xtk | λtk , Htk

1

�
for Xtk under Htk

1

given its variance λtk, which determines the statistical
model.
Estimators λ̂tk and �σ2

tk for the speech and noise spectral
variances, respectively.
An estimator p̂tk for the signal presence probability.
work we assume knowledge of the noise variance σ2

tk,
in practice can be estimated by using the Minima Con-
Recursive Averaging approach [9]. Furthermore, to sim-

he comparisons between the speech enhancement algo-
we focus on implementations that assume speech pres-

.e., p̂tk = 1) whenever 20 log10 |Xtk| > ε, where ε =
0 log10 |Xtk|} − 50 confines the dynamic range of the

ctrum to 50 dB. In the other time-frequency bins, p̂tk is
ero. We consider MMSE estimators for the spectral coeffi-
nder Gaussian, Gamma and Laplacian models [5, 10], and
-LSA estimator under a Gaussian model [1, 3]. An MMSE

tor is obtained by using the functions

k) = X̂tk , g̃(Xtk) =

�
Xtk , under Htk

1 ,
Gmin Ytk , under Htk

0 ,
(9)

Gmin � 1 represents a constant attenuation factor. An
-LSA estimator is obtained by using the functions

= log |X̂tk|, g̃(Xtk) =

�
log |Xtk|, under Htk

1 ,
log (Gmin|Ytk|) ,under Htk

0 .
(10)

tors X̂tk, which minimize the expected distortion given p̂tk,
d Ytk, are calculated from

(X̂tk) = E


g̃(Xtk)



 p̂tk , λ̂tk , Ytk

�
= p̂tk E


g̃(Xtk)




Htk
1 , λ̂tk , Ytk

�
+(1 − p̂tk) E


g̃(Xtk)




Htk
0 , Ytk

�
. (11)



The speech spectral variance is estimated based on the proposed
GARCH models, as described in following section.

4. VARIANCE ESTIMATION USING GARCH MODELS

The speech variance estimation follows the rational of Kalman fil-
tering. We start with an estimate λ̂tk|t−1 that relies on the noisy
observations up to frame t−1, and “update” the variance by using
the additional information Ytk. Then, the variance is “propagated”
ahead in time to obtain a conditional variance estimate at frame
t + 1 from the information available at frame t. The propagation
and update steps are iterated, to recursively estimate the speech
variances as new data arrive.

Assuming an estimate λ̂tk|t−1 for the one-frame-ahead con-
ditional variance of Xtk is available, an estimate for λtk|t can be
obtained by calculating its conditional mean under Htk

1 given Ytk

and λ̂tk|t−1. By definition, λtk|t = |Xtk|2 = X2
Rtk + X2

Itk.
Hence,

λ̂tk|t =
�

ρ∈{R,I}
E
�

X2
ρtk

���Htk
1 , λ̂tk|t−1 , Yρtk

�
. (12)

Defining the a priori and a posteriori signal-to-noise ratios
(SNRs), respectively, by

ξtk|t−1
�
=

λtk|t−1

σ2
tk

, γρtk
�
=

Y 2
ρtk

σ2
tk

, (13)

we can write for Yρtk �= 0

E
�

X2
ρtk

���Htk
1 , λ̂tk|t−1 , Yρtk

�
= GSP

�
ξ̂tk|t−1, γρtk

�
Y 2

ρtk

(14)
where the specific expression for GSP (ξ, γρ), representing the
MMSE gain function in the spectral power domain, depends on
the particular statistical model [8]. Equation (14) does not hold in
the case Yρtk → 0, since GSP (ξ, γρ) → ∞ as γρ → 0, and the
conditional variance of Xρtk is generally not zero. However, we
can define a function f(λ, σ2, Y 2

ρ ) such that

E
�

X2
ρtk

���Htk
1 , λ̂tk|t−1 , Yρtk

�
= f

�
λ̂tk|t−1, σ

2
tk, Y 2

ρtk

�

(15)

for all
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Yρtk [8]. Substituting (15) into (12), we obtain the update
the recursive estimation given by

= f
�
λ̂tk|t−1, σ

2
tk, Y 2

Rtk

�
+f

�
λ̂tk|t−1, σ

2
tk, Y 2

Itk

�
. (16)

formulate the propagation step, we assume that we are
t frame t − 1 an estimate λ̂t−1,k|t−2 for the conditional
e of Xt−1,k, which has been obtained from the noisy mea-
nts up to frame t− 2. Then a recursive MMSE estimate for
can be obtained by calculating its conditional mean under
given λ̂t−1,k|t−2 and Yt−1,k:

−1 = E
�

λtk|t−1

���Ht−1,k
1 , λ̂t−1,k|t−2 , Yt−1,k

�
. (17)

uting (6) into (17) and employing (12), we obtain

1 = λmin +µ λ̂t−1,k|t−1 +δ
�
λ̂t−1,k|t−2 − λmin

�
. (18)

n (18) is the propagation step, since the conditional vari-
stimates are propagated ahead in time to obtain a condi-
ariance estimate at frame t from the information available
e t − 1. The propagation and update steps are iterated as
ta arrive, following the rational of Kalman filtering.

EXPERIMENTAL RESULTS AND DISCUSSION

rformances of the MMSE spectral and LSA estimators were
ed under Gaussian, Gamma and Laplacian models, while
ech variance is estimated by using either the GARCH mod-
r the decision-directed method. The evaluation includes two
ve quality measures, and informal listening tests. The first
measure is log-spectral distortion, in dB, which is defined

=

�
� 1

|H1|
�

tk∈H1

�
20 log10 |Xtk| − 20 log10 |X̂tk|

�2

�
	

1
2

(19)
H1 = {tk | 20 log10 |Xtk| > ε} denotes the set of time-
cy bins which contain the speech signal, |H1| denotes its
Table 2. Log-Spectral Distortion and PESQ Scores Obtained by Using Different Variance Estimation Methods (GARCH Modeling Method
vs. Decision-Directed Method), Statistical Models (Gaussian vs. Gamma vs. Laplacian) and Fidelity Criteria (MMSE vs. MMSE-LSA).

Input GARCH modeling method Decision-Directed method
SNR Gaussian Gamma Laplacian Gaussian Gamma Laplacian
[dB] MMSE MMSE-LSA MMSE MMSE MMSE MMSE-LSA MMSE MMSE

0 7.77 4.85 8.03 7.91 18.89 11.35 17.76 18.14
Log- 5 5.78 4.04 6.93 6.45 17.29 11.03 15.73 16.26

Spectral 10 4.14 3.27 5.35 4.85 13.87 9.13 11.83 12.48
Distortion 15 2.50 2.25 3.23 2.92 9.19 6.05 6.95 7.59

20 1.30 1.28 1.55 1.44 4.88 3.13 2.88 3.34
0 2.52 2.55 2.47 2.48 1.91 2.21 1.98 1.96
5 2.97 2.98 2.90 2.91 2.30 2.61 2.38 2.36

PESQ 10 3.37 3.38 3.28 3.31 2.70 2.99 2.77 2.75
Scores 15 3.67 3.69 3.59 3.62 3.09 3.31 3.17 3.15

20 3.88 3.89 3.83 3.85 3.53 3.64 3.62 3.60



cardinality, and ε = max
tk

{20 log10 |Xtk|} − 50 confines the dy-

namic range of the log-spectrum to 50 dB. The second quality
measure is the PESQ score (ITU-T P.862).

The speech signals, taken from the TIMIT database, include
20 different utterances from 20 different speakers, half male and
half female. The signals are sampled at 16 kHz, degraded by white
Gaussian noise with SNRs in the range [0, 20] dB, and transformed
into the STFT domain using half overlapping Hamming analysis
windows of 32 milliseconds length. Maximum-likelihood esti-
mates of the model parameters (i.e., µ̂, δ̂ and λ̂min) are calcu-
lated independently for each speaker from the clean signal of that
speaker, as described in [8]. Eight different speech enhancement
algorithms are then applied to each noisy speech signal, as sum-
marized in Table 1.

Table 2 shows the results of the LSD and PESQ scores ob-
tained by using the different algorithms for various SNR levels.
The results show that:

• MMSE-LSA estimators yield lower LSD and higher PESQ
scores than MMSE spectral estimators, whether the vari-
ance is estimated by using the GARCH modeling method
or the decision-directed method.

• An MMSE spectral estimator derived under a Gamma sta-
tistical model performs better than that derived under Gaus-
sian or Laplacian models, but only if the speech variance is
estimated by the decision-directed method. However, if the
speech variance is estimated by using the GARCH model-
ing method, a Gaussian model is preferable to Gamma and
Laplacian models.

• Speech variance estimation based on GARCH modeling
yields lower LSD and higher PESQ scores than those ob-
tained by using the decision-directed method.

• The best performance is obtained when using the GARCH
modeling method, a Gaussian model and an MMSE-LSA
estimator. The worst performance is obtained when us-
ing the decision-directed method, a Gaussian model and an
MMSE spectral estimator.

A subjective study of speech spectrograms and informal listen-
ing tests confirm that the quality of the enhanced speech obtained
by using the GARCH modeling method, the MMSE-LSA estima-
tor and the Gaussian model is significantly better than that ob-
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Fig. 1. Speech spectrograms and waveforms. (a) Original clean speech signal: “Now forget all this other.”; (b) noisy signal (SNR = 5
dB, LSD = 13.75 dB, PESQ= 1.76); (c) speech reconstructed by using the decision-directed method, a Gaussian model and MMSE-LSA
estimator (LSD = 9.00 dB, PESQ = 2.57); (d) speech reconstructed by using the GARCH modeling method, a Gaussian model and
MMSE-LSA estimator (LSD = 3.59 dB, PESQ = 2.88).
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