Dominant Speaker Identification for Multipoint Videoconferencing

Under the supervision of
Prof. Israel Cohen
Outline

- Videoconferencing – an introduction
- Discussed realization
- Proposed method
 - Speech activity score evaluation
 - Single observation
 - Sequence of observations
- SNR estimation
- Experimental Results
Videoconferencing

Used for:

- Remote education
- Medical consulting
- Business meetings
- Personal communications
Videoconferencing

History: [1]

1964
AT&T 'Picturephone'
Not commercialized

1982
Compressor
System cost: 250,000
Line cost per hour:

1991
Tel
System cost: 20,000
Line cost per hour:

Today

What is a Multipoint Conference?

- 3 or more participants
- Each at his own location
- Single microphone and video camera
- The information is administered through a central control unit
Central control unit - MCU

- **Multipoint Control Unit**

The conference is administrated through an MCU:

- Participant 1
- Participant 2
- Participant N

Introduction

- Discussed Realization
- Proposed Method
- Score Evaluation
- SNR Estimation
- Experimental Results
Central control unit - MCU

- **Multipoint Control Unit**

The conference is administrated through an MCU:

- Participant 1
- Participant 2
- Participant N

- Decoding
- Processing
- Mixing
- Encoding

Heavy processing!
Central control unit - MCU

- Multipoint Control Unit

The conference is administrated through an MCU:

- Participant 1
- Participant 2
- Participant N

Reduce the amount of information to improve conference quality
Speaker selection

- Select M most active participants
- Discard all remaining information

Guidelines [2]

- The selection process should not introduce audio artifacts
- Transparent to the participants
- Resistance to noise
- Lack of discrimination

Speaker selection - Challenges

- **Equipment**
 - Low quality sensors lower SNR
 - Speakers produce crosstalk

- **Surrounding**
 - General noises
 - Transient noises

- **Personal characteristics**
 - Loud/Quiet participants
Classic Voice Activity Detection (VAD)

- Binary classification problem
 - Classify each signal frame into either speech or non-speech → ‘High resolution’ decision
 - Representation
 - Use a speech specific representation, to maximize discrimination ability
 - Classification method
 - Thresholding
 - Machine learning techniques
VAD and Speaker Selection

- Speaker Selection is a generalized task of VAD
- For each signal frame in each channel:
 - Determine whether it contains prolonged speech activity or not
- ‘Lower resolution’ decision is needed
 - Non-speech frames may belong to a speech burst too
Speaker Selection Methods

- **Yu et al. Computers and communications ISCC 1998**
 “Linear PCM signal processing unit in multi-point video conferencing system”
 - The channel with the biggest power is determined dominant
 - To prevent frequent change of current speaker the decision is made every 1 or 2 seconds

- **Chang, Lucent Technologies, 2001**
 “Multimedia conference call participant identification system and method “
 - Speaking participants are identified as those who pass a volume threshold

- **Kwak, Verizon Laboratories, 2002**
 “Speaker identifier for multi-party conference”
 - Dominant speaker determined based on signal amplitude
Speaker Selection Methods

- **Smith, MSc thesis, McGill University, 2002**
 - "Voice conferencing over IP networks"
 - Participants are ranked in the order of becoming active speakers
 - A participant can move up in rankings if the smoothed power of his signal is above a *barge-in* threshold

- **Xu et al. ICME IEEE, 2006**
 - "Pass: Peer-aware silence suppression for internet voice conferences"
 - Very advanced VAD for ranking
 - Barge-in mechanism
Summary of existing methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Provides solution for:</th>
<th>Stationary Noise</th>
<th>Frequent Switching</th>
<th>Transient Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yu 1998 (Power)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chang 2001 (Volume Threshold)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kwak 2002 (Amplitude)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Smith 2002 (Barge In)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Xu 2006 (Barge In & advanced VAD)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Assume that non-dominant channels are completely silent.

Assume that change in signal power originates from change in speaker.

Transient noise occurrences are not addressed.
Discussed realization

Dominant speaker identification (Speaker selection with $M=1$)
- Only one participant appears on each screen

- Participant 1
- Participant 2
- Dominant speaker
- Previous Dominant speaker
- Participant N

- Most video information is discarded
- Conversation is focused on the dominant speaker
- Further traffic reduction by discarding some audio
Discussed realization

- N channels
- **Speech Burst** – a speech event composed of three sequential phases: initiation, steady state and termination.
- **Speaker Switch** – the point where a change in dominant speaker occurs

Objective:
- Follow speech bursts
- Detect speaker switches

Introduction · **Discussed Realization** · Proposed Method · Score Evaluation · SNR Estimation · Experimental Results
Dominant speaker identification relying on speech activity in time intervals of different length

Currently observed frame

Time interval of medium length

Long time interval

Proposed Method
Dominant speaker identification relying on speech activity in time intervals of different length

- Two Stages:
 - Local processing
 - Individual processing on each channel
 - Speech activity score evaluation for the immediate, medium and long time-intervals
 - Global decision
 - Speech activity score comparison across channels
Local processing

- Channel i, time frame l:
 - Speech detection in sub-bands
 - Immediate time speech activity evaluation
 - $\Phi_{immed}^i(l)$
 - Medium interval speech activity evaluation
 - $\Phi_{medium}^i(l)$
 - Long interval speech activity evaluation
 - $\Phi_{long}^i(l)$

- Speech activity evaluation on time intervals of three characteristic lengths
- Three sequential steps
- The input into each step consists of smaller sub-units, of length characteristic to the previous step
- Activity is determined by the number of active sub-units
- Activity in a sub-unit is determined by thresholding

Introduction - Discussed Realization - Proposed Method - Score Evaluation - SNR Estimation - Experimental Results
Local processing

- Currently observed frame
 - Time-frequency representation
 - l – time index
 - $[k_1, k_{1+N_1}]$ – frequency range of voiced speech
Local processing

- Currently observed frame
- Time interval of medium length

Proposed Method

\[\mathbf{a}_1(l) = \sum_{i=1}^{N_2} \mathbf{a}_1(l - N_2 + 1) \cdots a_1(l - 1) a_1(l) \]
Local processing

- Currently observed frame \(a_1(l) \)
- Time interval of medium length

\[
\alpha_l =
\begin{pmatrix}
 a_1(l) \\
 a_1(l - 1) \\
 a_1(l - N_2 + 1)
\end{pmatrix}
\]
Local processing

- Currently observed frame $a_1(l)$
- Time interval of medium length $\alpha_l > th_2$, $\Sigma a_2(l)$

Proposed Method

Introduction · Discussed Realization · Proposed Method · Score Evaluation · SNR Estimation · Experimental Results
Local processing

- Currently observed frame
- Time interval of medium length
- Long time interval

\[a_1(l) = \sum a_2(l) \]

\[a_1 = \begin{cases} \text{Binary vector} & \text{if } a_2(l) > th_2 \\ \text{otherwise} & \end{cases} \]

\[a_2(l) = \begin{cases} a_2(l - (N_3 - 1)N_2 + 1) & \cdots \\ a_2(l - 2N_2 + 1) \\ a_2(l - N_2 + 1) \\ a_2(l) & \end{cases} \]

Introduction · Discussed Realization · **Proposed Method** · Score Evaluation · SNR Estimation · Experimental Results
Local processing

- Currently observed frame $a_1(l)$
- Time interval of medium length $a_2(l)$
- Long time interval

$$\beta_1 = \begin{bmatrix}
a_2(l) \\
a_2(l - N_2 + 1) \\
a_2(l - N_3 N_2 + 1)
\end{bmatrix}$$
Local processing

- Currently observed frame \(a_1(l) \)
- Time interval of medium length \(a_2(l) \)
- Long time interval

\[
\beta_1 = \sum_{i=1}^{\text{Binary vector}} (i > th_3)
\]

\(a_3(l) \)
Local processing

- Currently observed frame: $a_1(l)$
- Time interval of medium length: $a_2(l)$
- Long time interval: $a_3(l)$
Active sub-units & Transients

- Currently observed frame: $a_1(l)$
 - # of active sub-bands
- Time interval of medium length: $a_2(l)$
 - # of active frames
- Long time interval: $a_3(l)$
 - # of active blocks

Why Thresholding and counting?

- Smoothing
- Equalization
- Noise spikes suppression

Introduction · Discussed Realization · Proposed Method · Score Evaluation · SNR Estimation · Experimental Results
Active sub-units & Transients

- Currently observed frame: \(a_1(l) \) # of active sub-bands
- Time interval of medium length: \(a_2(l) \) # of active frames
- Long time interval: \(a_3(l) \) # of active blocks

Discriminating isolated transients from fluent audio activity:

- Binary vector Immediate
- Binary vector Medium
- Binary vector Long
Global Decision

- Time frame l:
 - $a_1^1(l), a_2^1(l), a_3^1(l)$
 - $a_1^2(l), a_2^2(l), a_3^2(l)$
 - $a_1^N(l), a_2^N(l), a_3^N(l)$

Dominant Speaker Identification

Dominant speaker in frame l
Global Decision

- **Time frame** l:

\[
\Phi_{immed}^1(l), \Phi_{medium}^1(l), \Phi_{long}^1(l) \\
\Phi_{immed}^2(l), \Phi_{medium}^2(l), \Phi_{long}^2(l) \\
\Phi_{immed}^N(l), \Phi_{medium}^N(l), \Phi_{long}^N(l)
\]

Dominant Speaker Identification

Dominant speaker in frame l
Dominant speaker identification

Activated once in a decision-interval

- **Objective:**
 - Detect *speaker switch* events

- **Method:**
 - Compare speech activity scores across channels
 - Each channel is evaluated in respect to:
 - the dominant channel
 - minimal activity level

Current dominant speaker remains unless activity on one of the other channels justifies a speaker switch
Score Evaluation

Single
- Score computed on a single observation
- Each observation is analyzed independently
- More responsive to changes

Sequential
- Score computed on a sequence of observations
- Exploits natural temporal dependence in speech
- More Smooth
Modeling the number of active sub-units

\(N \) – number of sub-units
\(a \) – number of active sub-units

Two Hypotheses:
\[
\begin{align*}
H_1 & : \text{speech is present} \\
H_0 & : \text{speech is absent}
\end{align*}
\]

Likelihood Models:
\[
\begin{align*}
p(a|H_1) & = \text{Bin}(N, p) = \binom{N}{a} p^a (1 - p)^{N-a} \\
p(a|H_0) & = \text{Exp}(\lambda) = \lambda e^{-\lambda a}
\end{align*}
\]
Score based on a single observation

\[\Lambda = \frac{p(a|H_1)}{p(a|H_0)} \]

\[\Phi = \log \Lambda \]

\[\Phi = \log \left(\frac{N}{a} \right) + a \log(p) + (N - a) \log(1 - p) - \log(\lambda) + \lambda a \]
Score based on a sequence of observations

- The score is computed on a sequence of observations

\[\mathbf{X}^l = [a(l - M + 1), \ldots, a(l)] \]

- Observations are not independent
 - A speech frame is more likely to be followed by another speech frame
 \[p(q_n = H_1 | q_{n-1} = H_1) > p(q_n = H_1) \]

First order Markovian dependency in the transitions between consecutive frames

Score based on a sequence of observations

- **HMM of two states:**
 \[\zeta_l = \begin{cases} H_{1,(l)} & \text{speech is present in frame } l \\ H_{0,(l)} & \text{speech is absent in frame } l \end{cases} \]

- State dynamics: \(b_{ij} = p(\zeta_l = j | \zeta_{l-1} = i) \), \(i, j \in \{0, 1\} \)
 - \([b_{00} + b_{01}] = 1, [b_{10} + b_{11}] = 1\)

- Steady state probabilities
 \[pH_0 = \frac{b_{10}}{b_{10} + b_{01}}, \quad pH_1 = \frac{b_{01}}{b_{10} + b_{01}} \]

- Current observation only depends on current state:
 \[p(X^l | \zeta_l, X^l) = p(X^l | \zeta_l) \]
Score based on a sequence of observations

Likelihood Ratio

\[\Lambda^\text{seq}_l = \frac{p(X^l | H_{1,(l)})}{p(X^l | H_{0,(l)})} \]

\[\frac{p(X^l, H_{1,(l)})pH_0}{p(X^l, H_{0,(l)})pH_1} \]

- Denote: \(\alpha_l(1) \equiv p(X^l, H_{1,(l)}) \) and \(\alpha_l(0) \equiv p(X^l, H_{0,(l)}) \)

- Recursive formula (forward procedure) for \(\alpha_l(j), j \in \{0,1\} \)

\[\alpha_q(j) = \begin{cases}
 p(X_q = a(q) | H_{j,(q)})[\alpha_{q-1}(0)b_{j0} + \alpha_{q-1}(1)b_{j1}] & , l - M + 1 < q < l \\
 p(X_q = a(q) | H_{j,(q)})p(H_j) & , q = l - M + 1
\end{cases} \]

Log-Likelihood Ratio

\[\Lambda^\text{seq}_l = \frac{\alpha_l(1)}{\alpha_l(0)} \cdot \frac{pH_0}{pH_1} \]

\[\Phi^\text{seq}_l = \log \frac{\alpha_l(1)}{\alpha_l(0)} + \log \frac{pH_0}{pH_1} \]
Denote: \(\Gamma(n) = \frac{\alpha_n(1)}{\alpha_n(0)} \), \(\Phi_{seq} = \log(\Gamma(n)) + \log \frac{pH_0}{pH_1} \)

\[
\Gamma(n) = \frac{\alpha_n(1)}{\alpha_n(0)} = \frac{p(a_n|H_1)}{p(a_n|H_0)} \cdot \frac{\alpha_{n-1}(0)b_{10} + \alpha_{n-1}(1)b_{11}}{\alpha_{n-1}(0)b_{00} + \alpha_{n-1}(1)b_{01}}
\]

\[
= \Lambda_n \cdot \frac{b_{10} + \Gamma(n-1)b_{11}}{b_{00} + \Gamma(n-1)b_{01}}
\]

\(\Phi_{seq} = \Phi_{single} + \log \frac{b_{10} + \Gamma(n-1)b_{11}}{b_{00} + \Gamma(n-1)b_{01}} + \log \frac{pH_0}{pH_1} \)
Single Vs. Sequential

\[\Phi_{seq} = \Phi_{single} + \log \frac{b_{10} + \Gamma(n-1)b_{11}}{b_{00} + \Gamma(n-1)b_{01}} + \log \frac{pH_0}{pH_1} \]

- In the presence of speech

\[\Gamma(n-1) \gg 0 \Rightarrow \log \frac{b_{10} + \Gamma(n-1)b_{11}}{b_{00} + \Gamma(n-1)b_{01}} \rightarrow \log \frac{b_{11}}{b_{10}} > 0 \]

\[\Rightarrow \Phi_{seq} > \Phi_{single} \]
Single Vs. Sequential

\[\Phi_{seq} = \Phi_{single} + \log \frac{b_{10} + \Gamma(n-1)b_{11}}{b_{00} + \Gamma(n-1)b_{01}} + \log \frac{pH_0}{pH_1} \]

- In absence of speech

\[\Gamma(n-1) \ll 1 \Rightarrow \log \frac{b_{10} + \Gamma(n-1)b_{11}}{b_{00} + \Gamma(n-1)b_{01}} \rightarrow \log \frac{b_{10}}{b_{00}} < 0 \]

\[\Rightarrow \Phi_{seq} < \Phi_{single} \]
A-priori SNR Estimation

Let: \(y(n) = x(n) + d(n) \) \(\xrightarrow{STFT} \) \(Y_l = X_l + D_l \)

- \(\lambda_l = E\{|X_l|^2\} \) – Spectral variance of speech
 - \(X_l \) is a complex vector \(X_l = A_l e^{j\phi_l} \)
 - \(\lambda_l = E\{|X_l|^2\} = E\{|A_l|^2\} \)
- \(\lambda_{Dl} = E\{|D_l|^2\} \) – Spectral variance of noise

A-priori SNR: \(\xi_{l|l} = \frac{\hat{\lambda}_{l|l}}{\lambda_{Dl}} \)
A-priori SNR Estimation

The estimator is derived in two steps: [5]

1. Propagation Step
 - Assuming we have all information up to frame $l - 1$
 - Obtain one frame ahead conditional variance $\hat{\lambda}_{l|l-1}$

2. Update Step
 - Update the estimator using information from current frame, l
 - Obtain $\hat{\lambda}_{l|l}$

A-priori SNR Estimation

The estimator is derived in two steps:

1. **Propagation Step**
 - Assuming we have all information up to frame $l - 1$
 - The conditional variance of speech is assumed to propagate as a GARCH(1,1) model:
 \[
 \lambda_{l|l-1} = \lambda_{min} + \mu |X_{l-1}|^2 + \delta (\lambda_{l-1|l-2} + \lambda_{min})
 \]
 \[
 \lambda_{min} > 0, \mu \geq 0, \delta \geq 0, \mu + \delta < 1
 \]

\[
\hat{\lambda}_{l|l-1} = E\{\lambda_{l|l-1}|\hat{A}_{l-1}, \hat{\lambda}_{l-1|l-2}\} = \lambda_{min} + \mu \hat{A}_{l-1}^2 + \delta (\hat{\lambda}_{l-1|l-2} + \lambda_{min})
\]
A-priori SNR Estimation

The estimator is derived in two steps:

1. **Propagation Step**

 \[
 \hat{\lambda}_{l|l-1} = E\{\lambda_{l|l-1}|\hat{A}_{l-1}, \hat{\lambda}_{l-1|l-2}\}
 \]

 \[
 = \lambda_{\text{min}} + \mu \hat{A}_{l-1}^2 + \delta (\hat{\lambda}_{l-1|l-2} + \lambda_{\text{min}})
 \]

2. **Update Step**

 - Update the estimator using information from current frame, \(l\)
 - Obtain \(\hat{\lambda}_{l|l}\)
2. Update Step:

Let: \[y(n) = x(n) + d(n) \rightarrow Y_l = X_l + D_l \]

- Spectral enhancement: \[\hat{X}_l = GY_l \]
- \(G \) – spectral gain function
- \(G \) is chosen as a minimizer of a certain distortion measure
2. **Update Step:**

- We chose G_{SP}, the minimizer of the power distortion measure

$$d_{SP} = (\hat{A}_l^2 - \hat{\Lambda}_l^2)^2$$

- $\gamma_l = \frac{|Y_l|^2}{\lambda_{D_l}}$ - a posteriori SNR

- $\hat{\lambda}_{l|l-1}$ - one frame ahead conditional variance (speech)

- The resulting spectral gain function is:

$$G_{SP}(\hat{\lambda}_{l|l-1}, Y_l) = \sqrt{\frac{\hat{\lambda}_{l|l-1}}{\lambda_{D_l} + \hat{\lambda}_{l|l-1}} \left(\frac{1}{Y_l} + \frac{\hat{\lambda}_{l|l-1}}{\lambda_{D_l} + \hat{\lambda}_{l|l-1}} \right)}$$
Speech detection in sub-bands

2. Update Step

\[\hat{X}_l = G_{SP}(\hat{\lambda}_{l|l-1}, \gamma_l)Y_l \Rightarrow \hat{\lambda}_{l|l} = E\{|\hat{X}_l|^2\} = G_{SP}(\hat{\lambda}_{l|l-1}, \gamma_l)^2 |Y_l|^2 \]

\[\hat{\lambda}_{l|l} = G_{SP}(\hat{\lambda}_{l|l-1}, \gamma_l)^2 |Y_l|^2 \]

The a-priori SNR estimator:

\[\hat{\xi}_{l|l} = \frac{\hat{\lambda}_{l|l}}{\lambda_{Dl}} = \frac{\hat{\lambda}_{l|l-1}}{\lambda_{Dl} + \hat{\lambda}_{l|l-1}} \left(1 + \frac{\hat{\lambda}_{l|l-1}\gamma_l}{\lambda_{Dl} + \hat{\lambda}_{l|l-1}}\right) \]
Experimental results

Three Experiments:
1. Identification of the dominant speaker
2. Robustness to transient audio occurrences
3. Results on a real multipoint conference
Experimental results

The proposed method was compared to:

- The speaker with the highest VAD score in the decision-interval is selected
 1. RAMIREZ [6]
 2. SOHN [4]
 3. GARCH [7]
- The speaker with the highest SNR is selected
- The speaker with the highest signal POWER is selected

Performance Evaluation

- Quantitative Evaluation:
 - False Speaker Switches #
 - Mid Sentence Clipping (MC) – percent of undetected mid section of a speech burst

![Diagram showing detected and true signals with MC]

Introduction • Discussed Realization • Proposed Method • Score Evaluation • SNR Estimation • Experimental Results
Experiment #1

Signals:

- One or more concatenated TiMit sentences of same speaker (with added white noise)
- The non silent part of the sentence is expected to be detected as a continuous speech burst
Experiment #1

Proposed method

Sohn VAD based method

Decision interval = 0.1 sec
Experiment #1

False Speaker Switches

Mid Sentence Clipping

Experimental results

Introduction • Discussed Realization • Proposed Method • Score Evaluation • SNR Estimation • Experimental Results
Experiment #2

Signals:
- One or more concatenated TiMit sentences of same speaker (with added white noise)
- A sound of sneezing was added to channel 2
- A sound of door knocks was added to channel 3
Experiment #2

Experimental results

Introduction · Discussed Realization · Proposed Method · Score Evaluation · SNR Estimation · Experimental Results
Experiment #2

False Speaker Switches

Mid Sentence Clipping

Experimental results

Introduction · Discussed Realization · Proposed Method · Score Evaluation · SNR Estimation · Experimental Results
Experiment #2

False Speaker Switches

Mid Sentence Clipping

Experimental results

Introduction
Discussed Realization
Proposed Method
Score Evaluation
SNR Estimation
Experimental Results

Decision interval = 0.05 sec
Experiment #2

Proposed Method

GARCH VAD based method

Decision interval = 0.3 sec

Red – hand labeled
Black – Algorithm’s result

Experimental Results
Experiment #2

Proposed Method

POWER based method

Red – hand labeled
Black – Algorithm’s result

Decision interval = 0.3 sec
Experiment #3

Signals:
- Real Multi-channel conversation
- 5 channels
- Channels 2 & 4 – clean speech
- Channel 1 – mostly noise
- Channels 3 and 5 - crosstalk
Experiment #3

Proposed Method

POWER based method

Red – hand labeled
Black – Algorithm’s result

Decision interval = 0.4 sec
Summary

- Novel method for dominant speaker identification
- Two approaches to speech activity score evaluation
- Experimental framework
- Less false speaker switches
- Robustness to transient audio occurrences
Future Research

- Non causal processing
- Temporally variable thresholds
- Preprocessing
 - Speech enhancement
 - Echo detection (or cancellation)
Thank You