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ABSTRACT

Differential microphone arrays (DMAs) have a great poten-
tial to overcome some of the problems of additive arrays and
provide high spatial gain relative to their small size. In this
work, we present a time-domain formulation for implement-
ing first-order DMAs, which is very important for some appli-
cations in which minimal delay is required, such as real-time
communications. We present a design example for first-order
DMAs illustrating some of the fundamental properties of the
time-domain implementation as well as the equivalence to the
frequency-domain implementation.

Index Terms— Microphone arrays, differential micro-
phone arrays (DMAs), time-domain broadband beamforming.

1. INTRODUCTION

Differential microphone arrays (DMAs) can be integrated
into several real-world beamforming applications involving
speech signals, e.g., hands-free telecommunication. DMAs
are characterized as superdirective [3] in general, small-size
arrays, whose beampattern is almost frequency invariant,
leading to greatly intelligible speech signals even in heavy
reverberant and noisy environments. Due to these benefits,
DMAs have attracted a significant amount of interest in the
field of broadband microphone array processing during the
past decade (see [4] - [11] and the references therein).

Broadband array processing algorithms can be imple-
mented both in the time and frequency domains. Design in
the time domain is important for applications that require
small delays such as real-time communications [13]. Second,
processing in the time domain circumvents the edge effects
between successive snapshots of the incoming signals. Fur-
thermore, in some cases the implementation of time-domain
filters is computationally more efficient than the equivalent
frequency-domain filters, especially when short filters are
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sufficient. The advantage of frequency-domain implementa-
tion is mainly due to the ability to implement some frequency
dependent processing algorithms, like frequency-selective
null-steering and efficient calculation of the sample matrix
inversion (SMI) [12] used in several adaptive array process-
ing applications.

In this work, we present a framework for a broadband
time-domain implementation of first-order DMAs. First, the
input array signals are manipulated and represented in a sep-
arable form as a product between a desired signal dependent
term and a second term which depends only on the array ge-
ometry. This representation is beneficial because it enables to
apply several array processing algorithms, originally devel-
oped in the frequency domain, into broadband time-domain
DMAs. We derive a closed-form solution for time-domain
first-order DMAs for any given number of sensors. Due to
the DMA assumption, the derived solution is very simple with
respect to other methods usually employed in the design of
general arrays where some constraints that ensure the fre-
quency invariance should be imposed. We also establish the
equivalent time-domain expressions for several commonly-
used quality measures like the beampattern, white noise gain
(WNG), and directivity factor (DF). Finally, we evaluate the
performance of the time-domain DMAs and compare it with
that of the frequency-domain implementation recently pro-
posed by Benesty et al. [5].

2. SIGNAL MODEL

We consider a broadband source signal, s(n), in the far-field,
where n is the discrete-time index, that propagates in an ane-
choic acoustic environment at the speed of sound, i.e., c =
340 m/s, and impinges on a uniform linear sensor array con-
sisting of M omnidirectional microphones, where the dis-
tance between two successive sensors is equal to δ. The direc-
tion of the source signal to the array is parameterized by the
angle θ, where θ = 0◦ corresponds to the endfire direction.
In the rest, microphone 1 is chosen as the reference sensor. In
this scenario, the signal measured at the mth microphone is
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given by

ym(n) = s [n−∆− fsτm(θ)] + vm(n), (1)

where ∆ is the propagation time from the position of the
source s(t) to sensor 1, fs is the sampling frequency, τm(θ) =
(m − 1) δ cos θ

c
is the delay between the first and the mth mi-

crophone which can be either positive or negative, and vm(n)
is the noise picked up by the mth sensor. We can also express
(1) as

ym(n) = gT
m(θ)s (n−∆) + vm(n), (2)

where the superscript T is the transpose operator, and gm(θ)
is a vector containing causal fractional delay filter coefficients
[14] with a maximum value in the location suitable to the de-
lay between the mth sensor and the reference sensor. The
length of the vector gm(θ) is Lg = 2LD+Lfd+1 where Lfd

is the length of the causal fractional delay filter, and LD =
⌈ (M−1)δfs

c
⌉ is the maximal delay between the reference sen-

sor and the extreme sensor. Note also that we introduce non-
causality to the vector gm(θ) in order to support the scenario
of signals that propagate from directions in which the signal
arrives to the sensors before it arrives to the reference sensor.
The signal vector s (n−∆) is a vector containing Lg succes-
sive samples of the signal s (n−∆).

By considering Lh successive time samples of the mth
microphone signal, (2) becomes a vector of length Lh:

ym(n) = Gm(θ)sL (n−∆) + vm(n), (3)

where Gm(θ) is a Sylvester matrix of size Lh × L created
from the vector gm(θ), with L = Lg + Lh − 1, the vector
sL (t−∆) is the signal vector of length L containing the sig-
nal samples, and vm(n) is a vector of length Lh containing
the noise samples.

Now, by concatenating the observations from the M mi-
crophones, we get a vector of length MLh:

y(n) =
[

yT
1 (n) yT

2 (n) · · · yT
M (n)

]T

= G(θ)sL (n−∆) + v(n), (4)

where

G(θ) =

⎡

⎢

⎢

⎢

⎣

G1(θ)
G2(θ)

...
GM (θ)

⎤

⎥

⎥

⎥

⎦

(5)

is a matrix of size MLh × L and

v(n) =
[

vT
1 (n) vT

2 (n) · · · vT
M (n)

]T (6)

is a vector of length MLh.
Like in DMAs, we assume that δ is much small with re-

spect to the wavelength of the signal, and the desired signal
propagates at the endfire, so that the observations are

y(t) = G(0)sL (t−∆) + v(t). (7)

Then, our objective is to design all kind of broadband DMAs,
where the main lobe is at the angle θ = 0, with a real-valued
spatiotemporal filter of length MLh:

h =
[

hT
1 hT

2 · · · hT
M

]T
, (8)

where hm, m = 1, . . . ,M are temporal filters of length Lh.

3. BROADBAND BEAMFORMING

By applying the filter h to the observation vector y(n), we
obtain the output of the broadband beamformer:

z(n) =
M
∑

m=1

hT
mym(n) = hTy(n) = xfd(n) + vrn(n), (9)

where

xfd(n) =
M
∑

m=1

hT
mGm(0)sL (n−∆)

= hTG(0)sL (n−∆) (10)

is the filtered desired signal and

vrn(n) =
M
∑

m=1

hT
mvm(n) = hTv(n) (11)

is the residual noise. We see from (10) that our desired signal
is s (n−∆). Therefore, the distortionless constraint is

hTG(0) = iT , (12)

where i is a column vector of length L with all its elements
equal to zero except for the (LD + 1)th element. This con-
straint is always required in the design of DMAs.

4. DESIGN OF FIRST-ORDER DMAS

It is well known that the design of a first-order DMA re-
quires at least M ≥ 2 microphones [5], [6]. For first-order
design, we have two constraints to fulfill; the distortionless
one given in (12) and a constraint with a null in the direction
θ1 ∈

[

π
2 ,π

]

, i.e.,

hTG(θ1) = 0T , (13)

where 0 is a zero vector of length L. Combining these two
constraints together, we get the following linear system:

[

GT
1 (0) GT

2 (0) · · · GT
M (0)

GT
1 (θ1) GT

2 (θ1) · · · GT
M (θ1)

]

h = i1, (14)

or, equivalently,

C1,M (θ)h = i1, (15)



where C1,M (θ) is a matrix of size 2L×MLh, and

i1 !

[

i
0

]

(16)

is a vector of length 2L. We can solve (15) using the pseudo-
inverse of C1,M (θ):

h = P
†
C1,M

(θ)i1, (17)

where

P
†
C1,M

(θ) =
[

CT
1,M (θ)C1,M (θ) + λI

]−1
CT

1,M (θ) (18)

is the pseudo-inverse of the matrix C1,M (θ) and the scalar λ
is a regularization small parameter which provide stable inver-
sion of the matrix. Later, in the simulation section we show
that this simple solution yields a frequency-invariant beam-
pattern although no specific constraints were imposed. This
is due to the fact that we deal with the DMA model which
inherently provide the frequency-invariance property.

5. PERFORMANCE MEASURES

Herein, we establish some measures which we use in the sim-
ulation section in order to assess the performance. Assuming
microphone 1 to be the reference sensor, the gain in signal-to-
noise ratio (SNR) is

G (h) =
oSNR (h)

iSNR
=

hTG(0)GT (0)h

hTΓvh
. (19)

where Γv = Rv

σ2
v1

is the pseudo-correlation matrix of v(t).
The WNG is obtained by taking Γv = IMLh

, where
IMLh

is the MLh ×MLh identity matrix, i.e.,

W (h) =
hTG(0)GT (0)h

hHh
. (20)

We can also define the broadband beampattern or broadband
directivity pattern as

|B (h, θ)|2 = hTG(θ)GT (θ)h. (21)

Finally, we define the DF of the array which is the gain in
SNR for the case of spherical diffuse noise. One way to cal-
culate the DF is to use (19) and substitute the time-domain
version of Γv for diffuse noise. Yet, an explicit expression
for Γv in the time domain is unavailable. Instead, we can use
directly the definition of the DF (see for example [15, ch.2]):

D (h) =
2

∫ π

0 |B (h, θ)|2 sin θdθ
, (22)

where B (h, θ) is defined in (21).
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Fig. 1: Beampatterns for the four basic shapes of first-order
DMAs produced by the time-domain implementation (dark
dashed line): (a) dipole, (b) cardioid, (c) hypercardioid, and
(d) supercardioid. The theoretical patterns are also presented
(blue circles line).

6. A DESIGN EXAMPLE

In this section, we study the design of first-order standard
DMA directivity patterns: dipole, cardioid, hypercardioid,
and supercardioid, each with one distinct null in the follow-
ing directions: θDp = π

2 , θCd = π, θHc =
2π
3 , and θSc =

3π
4 .

We choose a sensor spacing of δ = 1cm and examine the
case of M = 2 sensors. We choose Lfd = 7 taps and get
Lg = 10 taps. We choose the filter length Lh = 12 taps and
the sampling frequency to be fs = 8000 Hz. The regulariza-
tion parameter is set to be λ = 10−3.

Figure 1 shows a comparison between the broadband
beampattern of the time-domain implementation (21) (dark
dashed line), to the theoretical beampattern [5, ch.2] (blue
circles line). These patterns were also achieved by the
frequency-domain implementation in [5, ch.3]. Compar-
ing both patterns, one can obviously notice the equivalence
between the time-domain and frequency-domain implemen-
tations.

The obtained filters were tested by simulating a white
noise signal impinging towards the DMA and received by the
sensors according to the model presented at (3). The received
vector was fed into the temporal filters (17). Figure 2 shows



the time-domain waveform (dark blue line) of the signals ar-
rived from the endfire direction, null direction, and arbitrary
direction of 88◦. It also shows the waveforms of the recov-
ered signals in the output of the DMA (light red line). One
can see that the derived filters provide perfect recovery of the
desired endfire signal while suppressing the signal coming
from the null direction. For signals impinging from an arbi-
trary direction which the DMA was not designed to suppress
at all, the output signal is reasonably suppressed as compared
to the input signal.
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Fig. 2: Time-domain waveforms of the original signals (dark
blue line) and output recovered signals (light red line) for the
supercardioid: (a) source in the endfire direction, (b) source
in the null direction, and (c) source in an arbitrary direction
of 88◦.

We also plot in Fig. 3 the time-domain WNG and the time-
domain DF as a function of the number of sensors, M , for
the case of a first-order hypercardioid. One can see that the
WNG increases with the number of sensors, while the DF
is slightly above the value of 6 dB and does not vary at all.
This result is expected since from theoretical point of view,
we know that the directivity index is proportional to (N+1)2,
where N is the order. In addition, from this figure we can see
that one of the effective ways to increase the robustness of the
beamformer is to increase the number of sensors.

The results presented in this section show equivalence be-
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Fig. 3: WNG (circles) and DF (stars) vs. M , for the case of a
first-order hypercardioid.

tween time-domain and frequency-domain implementations
of DMAs. Moreover, testing the time-domain filters with ac-
tual broadband signals confirms that the desired endfire signal
is perfectly recovered while undesired signals, even if not ar-
riving from null directions, are significantly suppressed.

7. CONCLUSIONS

We have presented a framework for time-domain imple-
mentation of first-order DMAs, which is desirable in some
applications such as real-time communications. Due to the
DMA assumption, we get a very simple solution that pro-
vides a frequency-invariant beampattern. The quality mea-
sures widely used for assessment of beamformers were also
defined in the time domain. Simulation results of the pro-
posed implementation demonstrate that it is equivalent to
the frequency-domain implementation, while providing more
flexibility in the design considerations of practical systems
employing DMAs.
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