
A TUNABLE BEAMFORMER FOR ROBUST SUPERDIRECTIVE BEAMFORMING

Reuven Berkun, Israel Cohen

Technion, Israel Institute of Technology

Technion City, Haifa 32000, Israel

Jacob Benesty

INRS-EMT, University of Quebec

800 de la Gauchetiere Ouest, Suite 6900

Montreal, QC H5A 1K6, Canada

ABSTRACT

Conventional superdirective beamforming is a well-known multi-

microphone enhancement method with superior directivity factor

(DF). However, it suffers from an inferior white noise gain (WNG),

which is expressed by high sensitivity to uncorrelated noise and

array inaccuracies. In this work, a beamformer with tunable su-

perdirective gain is introduced. The proposed approach plays a

role of a regularized superdirective beamformer, where instead of

constraining the WNG, we minimize both white noise and diffuse

noise energy in the optimization problem. In addition, by using

a tunable regularization parameter, we control the amount of the

beamformer DF and WNG. This single boresight solution is then

extended to a multiple linear constraint beamformer, with any user-

determined spatial or frequency constraints. The beamformer gain

response simulations exhibit a robust and controllable solution with

an efficient DF/WNG tradeoff.

Index Terms— Linear microphone arrays, delay-and-sum

beamformer, superdirective beamformer, robust beamforming, white

noise gain, directivity factor.

1. INTRODUCTION

In many acoustic communication systems, the input speech sig-

nals are corrupted by reverberation and noise. As a result, multi-

microphone processing for signal enhancement became an essential

task in speech-controlled applications. Superdirective fixed beam-

forming is an effective enhancement method for array processing,

which provides high directive gain for closely-spaced elements [1].

However, the high sensitivity of this beamformer to uncorrelated

noise, sensor noise, spatial white noise and position errors, signifi-

cantly degrades its use in practice [1, 2, 3]. Dealing with this type

of errors can be assessed efficiently by the beamformer white noise

gain (WNG), a reliable robustness measure.

Many algorithms for robust superdirective beamforming were

developed, mostly by an explicit maximization of the array gain for

a given acceptable white noise amplification (or similar robustness

measure) constraint [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18]. Gilbert and Morgan [4] were among the first who ad-

dressed the constrained array optimization problem. Cox et al. [1]

introduced an optimal beamformer for maximum array gain with a

WNG constraint. Other methods include various forms of the op-

timization problem, such as an adaptive beamformer with an itera-

tive implementation algorithm [5], handling different mismatch er-

rors [6, 7], diagonal loading of the sample covariance matrix [19],
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etc. Later studies exploited the probability density functions of the

array characteristics errors for the optimization, instead of control-

ling the WNG level [8, 9, 10, 11]. Some methods suggested nonlin-

ear or worst-case performance optimization [11, 12], and considered

broadband superdirective beamforming [10, 11, 12].

In this paper, we address the problem of designing a ro-

bust superdirective distortionless beamformer, which maximizes

a weighted sum of both the directivity factor (DF) and WNG. Al-

though many solutions for similar problems exist, most of them lack

closed-form expressions for the constrained optimization problem,

and usually involve iterative steps [5] or reformulation in convex op-

timization forms (such as second-order cone programming [6, 13]).

Moreover, in many diagonal loading methods, for example, the

process of setting an optimal value for the regularization factor is

rather ad hoc [20] or requires prior knowledge of the signal and

interference [21, 22, 23]. We propose an innovative approach, in

which instead of constraining it, we maximize the WNG as well,

and obtain a new form of a regularized superdirective beamformer.

In practice, we propose an equivalent procedure in which we aim to

minimize the noise energy at the beamformer output, by controlling

the angular integral on the relevant noise fields. We obtain an alter-

native regularized solution, with an intuitive closed-form expression

for the regularization parameter. This parameter is controlled by a

tuning angle, which sets the weight of the WNG and the DF blend,

in the optimization problem. The proposed beamformer achieves an

effective compromise of high DF together with robustness against

white noise input, with full user-control of the desired properties.

This paper is organized as follows. In Section 2, we define the

problem and the signal model. In Section 3, several useful perfor-

mance measures are introduced. Next, in Section 4, we describe

three key conventional fixed beamformers, solutions of various gain

optimization problems. In Section 5, we present the tunable beam-

former, our proposed distortionless solution for control of the WNG

and the DF. Additionally, a generalized-multiple linear constraints

beamformer is introduced. Simulation results are presented in Sec-

tion 6. Finally, conclusions are given in Section 7.

2. SIGNAL MODEL AND PROBLEM FORMULATION

We consider a plane wave, in the far field, that propagates in an ane-

choic acoustic environment at the speed of sound, i.e., c = 340 m/s,

and impinges on a uniform linear sensor array consisting ofM omni-

directional microphones, where the distance between two successive

sensors equals to δ. The direction of the source signal to the array is

parameterized by the azimuth angle θ. In this context, the steering
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vector (of length M ) is given by

d(ω, θ) = (1)
[

1 e−̇ωτ0 cos θ · · · e−̇(M − 1)ωτ0 cos θ
]T

,

where the superscript T is the transpose operator, ̇ =
√
−1 is the

imaginary unit, ω = 2πf is the angular frequency, f > 0 is the tem-

poral frequency, and τ0 = δ/c is the delay between two successive

sensors at the angle θ = 0◦.

We are interested in fixed beamformers with small values of δ,

like in superdirective [1], [5] or differential beamforming [2], [14],

where the main lobe is at the angle θ = 0◦ (endfire direction) and

the desired signal propagates from the same angle. Then, our objec-

tive is to design linear array beamformers, which are able to achieve

supergains at the endfire with a better control of white noise ampli-

fication.

With this signal model, the observation signal vector (of length

M ) is

y(ω) =
[

Y1(ω) Y2(ω) · · · YM (ω)
]T

(2)

= x(ω) + v(ω)

= d(ω)X(ω) + v(ω),

where Ym(ω) is the mth microphone signal, x(ω) = d(ω)X(ω),
X(ω) is the desired signal, d(ω) = d(ω, 0◦) is the steering vector

at θ = 0◦ (direction of the source), and v(ω) is the additive noise

signal vector.

By applying a complex-valued linear filter (of length M ), h(ω),
to the observation signal vector, y(ω), we obtain the beamformer

output [15]:

Z(ω) = h
H(ω)y(ω) (3)

= h
H(ω)d(ω)X(ω) + h

H(ω)v(ω),

where Z(ω) is an estimate of the desired signal, X(ω), and the su-

perscript H is the conjugate-transpose operator. In our context, the

distortionless constraint is desired, i.e.,

h
H(ω)d(ω) = 1. (4)

3. PERFORMANCE MEASURES

In this section, we present some useful performance measures. The

first important measure is the beampattern or directivity pattern,

which describes the sensitivity of the beamformer to a plane wave

impinging on the array from a direction θ. It is given by

B[h(ω), θ] = d
H(ω, θ)h(ω) (5)

=

M
∑

m=1

Hm(ω)e̇(m− 1)ωτ0 cos θ.

In [16], we define the gain in the signal-to-noise ratio (SNR), as

the ratio between the input and the output SNR:

G[h(ω)] = oSNR[h(ω)]

iSNR(ω)
=

∣

∣hH(ω)d(ω)
∣

∣

2

hH(ω)Γv(ω)h(ω)
, (6)

where Γv(ω) is the pseudo-coherence matrix of v(ω) [16].

The most convenient way to evaluate the sensitivity of the array

to some of its imperfections is via the so-called WNG, which mea-

sures the array gain to a white-noise input. It is defined by taking

Γv(ω) = IM in (6), where IM is the M ×M identity matrix, i.e.,

W[h(ω)] =

∣

∣hH(ω)d(ω)
∣

∣

2

hH(ω)h(ω)
. (7)

We can easily find that the maximum WNG is

Wmax =M, (8)

which is frequency independent. The white noise amplification is

the most serious problem with superdirective beamformers, which

restricts their deployment in practice.

Another important measure, which measures diffuse noise re-

duction and quantifies how the microphone array performs in the

presence of reverberation is the DF (i.e., the SNR-gain for a diffuse-

noise input). Considering a spherically isotropic (diffuse) noise field,

the DF is defined as

D[h(ω)] =
|B[h(ω), 0◦]|2

1

2

∫ π

0

|B[h(ω), θ]|2 sin θdθ
(9)

=

∣

∣hH(ω)d(ω)
∣

∣

2

hH(ω)Γ0,π(ω)h(ω)
,

where

Γ0,π(ω) =
1

2

∫ π

0

d(ω, θ)dH(ω, θ) sin θdθ. (10)

The elements of the M ×M matrix Γ0,π(ω) are

[Γ0,π(ω)]ij =
sin[ω(j − i)τ0]

ω(j − i)τ0
(11)

= sinc[ω(j − i)τ0],

with [Γ0,π(ω)]mm = 1, m = 1, 2, . . . ,M . It is easy to verify that

the maximum DF is

Dmax(ω) = d
H(ω)Γ−1

0,π(ω)d(ω), (12)

which is frequency dependent. The maximum DF is referred as su-

pergain when it is close to M2 [18]. This gain can be achieved but

at the expense of white noise amplification.

Then, one of the foremost issues in practice is how to com-

promise between W[h(ω)] and D[h(ω)]. Ideally, we would like

D[h(ω)] to be as large as possible with W[h(ω)] ≥ 1.

4. CONVENTIONAL FIXED BEAMFORMERS

In this section, we briefly discuss three important conventional fixed

beamformers: delay-and-sum, superdirective, and robust superdirec-

tive.

The simplest and the most well-known beamformer is the delay-

and-sum (DS), which is derived by maximizing the WNG [eq. (7)]

subject to the distortionless constraint (4). We easily get

hDS(ω) =
d(ω)

dH(ω)d(ω)
=

d(ω)

M
. (13)

Therefore, the WNG and DF are, respectively,

W[hDS(ω)] =M = Wmax (14)



and

D[hDS(ω)] =
M2

dH(ω)Γ0,π(ω)d(ω)
≥ 1. (15)

Clearly, the DS beamformer maximizes the WNG and never am-

plifies the diffuse noise since D[hDS(ω)] ≥ 1. However, in re-

verberant and noisy environments, it is essential to have high DF

for good speech enhancement (i.e., dereverberation and noise reduc-

tion). But, unfortunately, this does not happen, in general, with the

DS beamformer, which is known to perform very poorly when the

reverberation time of the room is high, even with a large number of

microphones.

The second important beamformer is obtained by maximizing

the DF [eq. (9)] subject to the distortionless constraint (4). We get

the well-known superdirective beamformer [1]:

hSD(ω) =
Γ−1

0,π(ω)d(ω)

dH(ω)Γ−1
0,π(ω)d(ω)

. (16)

This filter is a particular form of the celebrated minimum variance

distortionless response (MVDR) beamformer [24], [25]. Also, (16)

corresponds to the directivity pattern of the hypercardioid of order

M − 1 [14]. We deduce that the WNG and the DF are, respectively,

W[hSD(ω)] =
[dH (ω)Γ−1

0,π(ω)d(ω)]
2

dH(ω)Γ−2
0,π(ω)d(ω)

(17)

and

D[hSD(ω)] = d
H(ω)Γ−1

0,π(ω)d(ω) = Dmax(ω). (18)

Finally, the last conventional beamformer of interest is obtained

by maximizing the DF subject to a constraint on the WNG. Using

the distortionless constraint, we find the robust superdirective beam-

former [1], [5]:

hR,ǫ(ω) =
[ǫIM + Γ0,π(ω)]

−1d(ω)

dH(ω)[ǫIM + Γ0,π(ω)]−1d(ω)
, (19)

where ǫ ≥ 0 is a Lagrange multiplier. It is clear that (19) is a reg-

ularized (or robust) version of (16), where ǫ serves as the regular-

ization parameter. This parameter tries to find a good compromise

between a supergain and white noise amplification. A small ǫ leads

to a large DF and a low WNG, while a large ǫ gives a low DF and

a large WNG. Two interesting cases are hR,0(ω) = hSD(ω) and

hR,∞(ω) = hDS(ω). While hR,ǫ(ω) has some control on white

noise amplification, it is certainly not easy to find an intuitive mean-

ing or a closed-form expression for ǫ given a desired value of the

WNG.

5. TUNABLE BEAMFORMER

Since we want to compromise between the WNG and the DF, each

representing a contradictory physical need, we suggest to address

the optimization problem from a different point of view. Instead of

targeting to maximize the beamformer DF with a constraint on the

WNG, we would like to minimize the amplification of noise that

passes through the system. Accordingly, we propose to reduce the

weighted combination of the relevant noise energies, meaning, at

the beamformer output, we should minimize some white noise plus

some diffuse noise energy subject to the distortionless constraint,

i.e.,

min
h(ω)

h
H(ω) [ǫψIM + Γψ,π(ω)]h(ω)

subject to h
H(ω)d(ω) = 1, (20)

where

Γψ,π(ω) =
1

2

∫ π

ψ

d(ω, θ)dH(ω, θ) sin θdθ, (21)

and 0 ≤ ψ ≤ π. We note that the first addend in (20) is inversely

proportional to the WNG, whereas the second addend, for ψ = 0, is

inversely proportional to the DF. It can be shown that the elements

of the M ×M matrix Γψ,π(ω) are

[Γψ,π(ω)]ij =
e̇ω(j − i)τ0 cosψ − e−̇ω(j − i)τ0

2̇ω(j − i)τ0
, (22)

with

[Γψ,π(ω)]mm =
1 + cosψ

2
, m = 1, 2, . . . ,M. (23)

In (20), with the matrix Γψ,π(ω), we minimize the diffuse noise

from the angle ψ to π, while with ǫψ , we control the amount of

white noise we wish to minimize. In order to derive an applica-

ble solution of the minimization problem, we add a normalization

constraint. One way to normalize the weighted combination of the

relevant noise energies is to restrict tr[ǫψIM +Γψ,π(ω)] to M , with

tr(·) denoting the trace of a square matrix. Therefore, with (23), we

get

M ·
(

ǫψ +
1 + cosψ

2

)

=M, (24)

hence

ǫψ =
1− cosψ

2
. (25)

Similarly to the conventional beamformers (13, 16) derivation,

the minimization of (20) leads to the tunable beamformer:

hT,ψ(ω) =
[ǫψIM + Γψ,π(ω)]

−1d(ω)

dH(ω)[ǫψIM + Γψ,π(ω)]−1d(ω)
. (26)

We can see that hT,0(ω) = hSD(ω) and hT,π(ω) = hDS(ω). This

approach of angular integration over the noise suggests an interesting

and useful alternative for the conventional optimization methods.

This idea can be generalized by adding more constraints to the

optimization problem. Suppose that we want a null in the direction

π, the additional constraint is hH(ω)d(ω,π) = 0. Therefore, the

criterion to optimize is

min
h(ω)

h
H(ω)[ǫψIM + Γψ,π(ω)]h(ω)

subject to h
H(ω)C(ω) = i

T , (27)

where

C(ω) =

[

dT (ω)
dT (ω, π)

]T

, (28)

i = [ 1 0 ]T . (29)

We find some kind of cardioid of order M − 1:

hC,ψ(ω) = Υ
−1
ψ (ω)C(ω)[CH(ω)Υ−1

ψ (ω)C(ω)]−1
i, (30)

where

Υψ(ω) = ǫψIM + Γψ,π(ω). (31)



6. SIMULATIONS

One of the key factors that controls the frequency response is the ar-

ray physical structure. The number of microphonesM , and the spac-

ing distance δ vastly impact the beamformer WNG and DF [1, 16].

Increasing the number of microphones M leads to a higher maxi-

mal WNG and DF, whereas higher δ changes the WNG/DF tradeoff

[1]. In the proposed approach, we control the compromise between

the WNG and the DF, or alternately between the white noise and

the diffuse noise output energies, by setting an appropriate value for

the parameter ψ. Fine tuning of ψ determines the exact WNG/DF

tradeoff, hence allowing full control of the beamformer response.

Next, we demonstrate the proposed beamformer with few represen-

tative values of ψ, and compare it to the regularized superdirective

beamformer.

First, we simulated the tunable beamformer (26). In Fig. 1(a)-

(b), we show an example of its WNG and DF, with ψ = 10◦. This

value satisfies both acceptable white noise amplification, also in low

frequencies, and relatively high DF. When compared to the regular-

ized superdirective beamformer (19) (with ǫ = 1 · 10−4), this value

provides a better WNG, but a bit lower DF.

Next, we demonstrate the response of the multiple linear con-

straints beamformer (30). An example of its WNG and DF is illus-

trated in Fig. 1(c)-(d). Here we chose ψ = 0.5◦ for higher DF (at the

expense of a lower yet still tolerable WNG). In addition, the obtained

frequency response here is much more similar to the regularized su-

perdirective beamformer (19).

Choosing a higher value for ψ would enlarge the WNG but

conversely decrease the DF [reducing the integral boundary range

in (21)]. This type of behavior is examined in Fig. 2, where we

analyze the WNG and DF responses of (26) versus the angle ψ, for

few representative frequencies. Evidently, a larger ψ gives more

weight to ǫψIM coefficient in (20), providing a higher WNG and

lower DF.

Examining Figs. 1-2, especially with respect to the regularized

superdirective beamformer [5, 16, 17], we note that the tunable

beamformer and the constrained superdirective beamformer share

a lot in common. In fact, for very small values of ψ and ǫ, the

tunable beamformer approximates (19), since for ψ ≪ 1 [rad] we

can denote Γψ,π(ω) ≈ Γ0,π(ω) and demand ǫψ
!
= ǫ.

Actually, for ψ ≪ 1 we can obtain a direct and simple relation

between the two. Using first-order Taylor expansion of (25), we get

ǫψ ≈ ψ2

4
. (32)

i.e., with ψ
!
= 2

√
ǫ and ψ ≪ 1, we get hT,ψ(ω) ≈ hR,ǫ(ω).

7. CONCLUSIONS

We have proposed a new approach for robust superdirective beam-

forming, by introducing the tunable beamformer. This solution com-

prises a useful alternative for the constrained superdirective beam-

former. It allows us to control the amount of the white noise and the

diffuse noise energy we minimize, by tuning the parameter ψ. We

derived a closed-form expression for the regularization parameter,

which varies only from 0 to 1, as opposed to most of the common

approaches, in which the parameter varies up to infinity with no in-

tuitive physical meaning for its value. In addition, this solution was

generalized to a multiple linear constraints beamformer, where any
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Fig. 1: Array gains of the proposed beamformers versus frequency,

with M = 8 microphones and δ = 1 cm. The left figures illustrate

the beamformer WNG (solid line) versus frequency. As a reference,

W[hDS(ω)] = Wmax (dashed line), W[hSD(ω)] (dotted line), and

W[hR,ǫ(ω)] (dot-dash-dot line, ǫ = 10−4) are plotted. The right

figures illustrate the proposed beamformer DF (solid line). As a ref-

erence, D[hSD(ω)] = Dmax(ω) (dashed line), D[hDS(ω)] (dotted

line), and D[hR,ǫ(ω)] (dot-dash-dot line) are plotted. (a)-(b) WNG

and DF of hT,ψ(ω) (26), with ψ = 10◦. (c)-(d) WNG and DF of

hC,ψ(ω) (28), with ψ = 0.5◦ and null in π direction.
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Fig. 2: (a)-(b) WNG and DF curves of hT,ψ(ω) (26) versus ψ, with

M = 8 microphones and δ = 1 cm, at f = 0.5 kHz (solid line),

f = 2 kHz (dashed line), f = 4 kHz (dotted line), and f = 8 kHz

(dot-dash-dot line).

type of spatial or frequency linear constraint can be satisfied. We

demonstrated design examples, both for the WNG and DF measure-

ments, and examined the influence of the angle ψ on the WNG–DF

tradeoff.

The proposed angular approach with tunable regularization pa-

rameter offers a new perspective for angular noise field analysis and

regularized robust beamforming, and may be analyzed for more uses

and expansions in the future.
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