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ABSTRACT

In this paper, we introduce an optimal beamformer de-
sign that facilitates a compromise between high directivity
and low white noise amplification. The proposed beamformer
involves a regularization factor, whose optimal value is deter-
mined using a simple and efficient one dimensional search
algorithm. Simulation results demonstrate controlled tuning
of various gain properties of the desired beamformer, and im-
proved performance compared to a competing method.

Index Terms— Microphone arrays, beamforming, delay-
and-sum beamformer, superdirective beamformer, robust su-
perdirective beamformer, supergain, white noise gain, direc-
tivity factor.

1. INTRODUCTION

Most fixed conventional beamformers are optimally designed
for a given noise field. The most well-known beamformers
are the delay-and-sum (DS), which maximizes the signal-to-
noise ratio (SNR) gain under white noise conditions, and the
superdirective beamformer [1, 2], which does the same only
for diffuse noise. Realistic environments, however, are likely
to impose several types of noises all at once. Unfortunately,
it turns out that beamformers designed to operate solely un-
der white noise perform poorly under diffuse noise, and vice-
versa. Hence, extensive work has been done to find a superdi-
rective beamformer with increased robustness to the white
noise.

Cox et al. [1, 3] introduced an optimal beamformer which
is derived when the white noise gain is constrained. Other
methods suggested different variations on optimization prob-
lems, e.g., diagonal loading [4], or addressing microphone
characteristics mismatch [5, 6], to solve this trade-off. Re-
cently, Berkun et al. [7, 8] proposed robust approaches, which
use a closed-form expression that enables tuning the beam-
former’s performance under various noise types. However, in
almost all of these designs, the regularization factor, which
is necessary for obtaining optimal results, is not easy to find.
Often, the regularization factor is set by some heuristic con-
siderations or some prior knowledge regarding the signal and
the interference.

In this paper, we address the trade-off between the beam-
former performances under white noise and diffuse noise by
taking a slightly different approach. In Section 2, we present
the signal model and the array setup as well as some basic
performance measures. Section 3 summarizes the properties
of conventional beamformers: DS, superdirective, and reg-
ularized superdirective. Next, in Section 4, we propose the
usage of a combined noise field, composed of both white and
diffuse noise. Considering this new noise model, we define
the relevant SNR gain criterion and find the respective opti-
mal beamformer. We then present a simple and computation-
ally efficient search algorithm for calculating the optimal reg-
ularization factor. Section 5 shows simulation results, which
demonstrate our design method and its improved performance
compared to the combined beamformers method described in
[7]. Section 6 concludes the paper and offers future research
possibilities.

2. SIGNAL MODEL AND ARRAY SETUP

We consider a plane wave, in the farfield, that propagates in
an anechoic acoustic environment at the speed of sound in air
and impinges on a uniform linear sensor array consisting of
M omnidirectional microphones. The distance between two
successive sensors is equal to δ and the direction of the source
signal to the array is parameterized by the azimuth angle θ.
The steering vector (of length M ) is therefore given by

d (ω, θ) =
[
1 e−jωτ0 cos θ · · · e−j(M−1)ωτ0 cos θ

]T
,
(1)

where the superscript T is the transpose operator, j =
√
−1 is

the imaginary unit, ω = 2πf is the angular frequency, f > 0
is the temporal frequency, and τ0 = δ/c is the delay between
two successive sensors at the angle θ = 0. We are interested
in superdirective [1, 3] or differential beamforming [9, 10],
where the inter-element spacing, δ, is small, the main lobe is
at the angle θ = 0 (endfire direction), and the desired signal
propagates from the same angle. With the conventional signal
model [10], the observation signal vector (of length M ) is

y (ω) =
[
Y1 (ω) Y2 (ω) · · · YM (ω)

]T
= x (ω) + v (ω) = d (ω)X (ω) + v (ω) ,

(2)
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where Ym (ω) is the mth microphone signal, x (ω) =
d (ω)X (ω), X (ω) is the desired signal, d (ω) = d (ω, 0)
is the steering vector at θ = 0 (direction of the source),
and v (ω) is the additive noise signal vector. By applying a
complex-valued linear filter, h (ω), to the observation signal
vector, we obtain the beamformer output [11]:

Z (ω) = hH (ω)y (ω)

= hH (ω)d (ω)X (ω) + hH (ω)v (ω) ,
(3)

where Z (ω) is an estimate of the desired signal, X (ω),
and the superscript (·)H is the conjugate-transpose operator.
In our context, the distortionless constraint is desired, i.e.,
hH (ω)d (ω) = 1.

3. PERFORMANCE MEASURES AND
CONVENTIONAL BEAMFORMERS

The first important measures are the input and output SNRs.
Taking the first microphone as a reference, we can define the
input SNR as

iSNR (ω) =
φX (ω)

φV1 (ω)
,

where φX (ω) = E
[
|X (ω)|2

]
and φV1 (ω) = E

[
|V1 (ω)|2

]
are the variances of X (ω) and V1 (ω), respectively, with E[·]
denoting mathematical expectation. The output SNR is de-
fined as

oSNR [h (ω)] =
φX (ω)

φV1
(ω)
×

∣∣hH (ω)d (ω)
∣∣2

hH (ω)Γv (ω)h (ω)
,

where Γv (ω) =
E[v(ω)vH(ω)]

φV1
(ω) is the pseudo-coherence ma-

trix of v (ω). From the two previous definitions, we deduce
the gain in SNR:

G [h (ω)] =
oSNR [h (ω)]

iSNR (ω)
=

∣∣hH (ω)d (ω)
∣∣2

hH (ω)Γv (ω)h (ω)
. (4)

The most convenient way to evaluate the sensitivity of the
array to some of its imperfections such as sensor noise is via
the so-called white noise gain (WNG), which is defined by
plugging Γv (ω) = IM (IM is the M ×M identity matrix)
into (4):

W [h (ω)] =

∣∣hH (ω)d (ω)
∣∣2

hH (ω)h (ω)
≤M. (5)

It is easy to see that W [h (ω)] is maximized with the well-
known DS beamformer:

hDS (ω) =
d (ω)

dH (ω)d (ω)
=

d (ω)

M
. (6)

Another important measure, which quantifies how the micro-
phone array performs in the presence of reverberation, is the

directivity factor (DF). Considering the spherically isotropic
(diffuse) noise field, the DF is defined as

D [h (ω)] =

∣∣hH (ω)d (ω)
∣∣2

hH (ω)Γd (ω)h (ω)
≤M2, (7)

where Γd (ω) = 1
2

∫ π
0

d (ω, θ)dH (ω, θ) sin θdθ. It can be
verified that the elements of the M ×M matrix Γd (ω) are

[Γd (ω)]ij =
sin [ω(j − i)τ0]
ω(j − i)τ0

= sinc [ω(j − i)τ0] .

It can be shown that D [h (ω)] is maximized with the conven-
tional superdirective (SD) beamformer [3]:

hSD (ω) =
Γ−1d (ω)d (ω)

dH (ω)Γ−1d (ω)d (ω)
. (8)

This filter is a particular form of the celebrated minimum vari-
ance distortionless response (MVDR) beamformer [12, 13].
While the DS beamformer maximizes the WNG and never
amplifies the diffuse noise sinceD [hDS (ω)] ≥ 1, it performs
poorly in reverberant and noisy environments, even with a
large number of microphones, because its DF is relatively
low. On the other hand, with the superdirective beamformer
we can obtain a DF close toM2, which is good for speech en-
hancement (i.e., dereverberation and noise reduction), but the
WNG can be much smaller than 1, especially at low frequen-
cies, implying a severe problem of white noise amplification,
which is the most serious issue with the SD beamformer.

Hence, one of the most important aspects in practice is
how to compromise between W [h (ω)] and D [h (ω)]. Ide-
ally, we would like D [h (ω)] to be as large as possible with
W [h (ω)] ≥ 1. To achieve this goal, the authors in [1, 3]
proposed to maximize the DF, subject to a constraint on the
WNG. Using the distortionless constraint, we find the robust
superdirective beamformer:

hR,ε (ω) =
[εIM + Γd (ω)]

−1
d (ω)

dH (ω) [εIM + Γd (ω)]
−1

d (ω)
, (9)

where ε ≥ 0 is a Lagrange multiplier. Note that (9) is a reg-
ularized (or robust) version of (8), where ε can be seen as
the regularization parameter. This parameter aims to com-
promise between supergain and white noise amplification. A
small ε leads to a large DF and a low WNG, while a large ε
yields low DF and large WNG. Two interesting cases of (9)
are hR,0 (ω) = hSD (ω) and hR,∞ (ω) = hDS (ω). While
hR,ε (ω) has some control on white noise amplification, it is
certainly not easy to find a closed-form expression for ε, given
a desired value of the WNG.

4. NEW NOISE FIELD AND PROPOSED
BEAMFORMER

We assume that the sensed signal is corrupted both by some
additive diffuse noise and by some additive white noise.



Therefore, the input SNR is now

iSNR (ω) =
tr
[
φX (ω)d (ω)dH (ω)

]
tr [φd (ω)Γd (ω) + φw (ω) IM ]

=

=
φX (ω)

φd (ω) + φw (ω)
,

where tr [·] denotes the trace of a square matrix, and φd (ω)
and φw (ω) are the variances of the diffuse and white noises,
respectively. We deduce that the output SNR is

oSNR [h (ω)] =

φX (ω)
∣∣hH (ω)d (ω)

∣∣2
φd (ω)hH (ω)Γd (ω)h (ω) + φw (ω)hH (ω)h (ω)

,

As a result, the gain in SNR is

G [h (ω)] = ∣∣hH (ω)d (ω)
∣∣2

[1− α(ω)]hH (ω)Γd (ω)h (ω) + α(ω)hH (ω)h (ω)
,

(10)

where α(ω) = φw(ω)
φd(ω)+φw(ω) , with 0 ≤ α(ω) ≤ 1. It is easy

to check that the beamformer that maximizes G [h (ω)] is

hα (ω) =
Γ−1d,α (ω)d (ω)

dH (ω)Γ−1d,α (ω)d (ω)
, (11)

where Γd,α (ω) = [1− α(ω)]Γd (ω) + α(ω)IM . Then, the
maximum gain in SNR is

G [hα (ω)] = dH (ω)Γ−1d,α (ω)d (ω) . (12)

The problem is that φd (ω) and φw (ω) are not known in prac-
tice. In fact, we can express (11) as (9) with a frequency
dependent regularizer ε(ω) = α(ω)/ (1− α(ω)), showing
that our beamformer is equivalent to (9). However, our ro-
bust superdirective beamformer (11) is preferred for two rea-
sons. First, α(ω) varies only from 0 to 1 while ε in (9) varies
from 0 to∞. The second reason is the simple dependence be-
tween the gain and α(ω), which allows us to efficiently find
the appropriate α(ω) values, as will be shown later. Find-
ing the value of α(ω) that corresponds to a fixed gain of G0
(M ≤ G0 ≤ M2) can be expressed using the following opti-
mization problem:

min
α

∣∣∣dH (ω)Γ−1d,α (ω)d (ω)− G0
∣∣∣ s. t. 0 ≤ α ≤ 1 . (13)

From simulations not presented here due to space limita-
tion, it can be seen that the gain is continuous and has a
single minimum point in the range α ∈ [0, 1], denoted here
as αmin(ω). The gain will monotonically decrease in the
range [0, αmin(ω)] and monotonically increase in the range
[αmin(ω), 1]. This property enables us to calculate α sim-
ply by conducting a binary-like search for each monotonic

Algorithm 1 MAS - Minimize and Search
Input: Desired gain G0, and tolerance; Output: Optimal reg-
ularization α

1: Find αmin that minimizes the gain (e.g., using gradient
descent).

2: Divide the range [0, 1] into 2 sections in which the gain is
monotonic: [0, αmin] and [αmin, 1].

3: For each section, apply the following continuous binary
search:

4: Divide the section into 2 sub-sections.
5: Calculate the gain Gk in the middle of each sub-section.
6: Choose the gain Gk and its respective sub-section for

which |Gk − G0| is minimal
7: if |Gk − G0| ≤ tolerance then
8: α←(middle of chosen sub-section) and stop.
9: else

10: update range to be the chosen sub-section and go back
to 4

11: end if
12: Compare results from [0, αmin] and [αmin, 1] and choose

the best result.

section. This method is described in Algorithm 1, which nu-
merically solves (13), i.e., finds α for which the beamformer’s
SNR gain is closest to G0 for each frequency independently.

This approach can be used to constrain and optimize other
gain properties as well. Instead of fixing the SNR gain, many
applications require maximizing it while fixing the WNG
or the DF. Since both the WNG and DF are monotonic in
α ∈ [0, 1], as can also be seen in simulations, Algorithm
1 can be used here as well. The computational complexity
of the binary-like search is O

{
|ω| log2

[(
M2 −M

)
/σ
]}

,
where σ > 0 is the acceptable tolerance from the desired
gain. This is the only step necessary for a fixed WNG/DF.
When fixing the SNR gain, we need to add the complexity of
finding the initial minimum point, e.g., using gradient descent
method with exact line search which requires O{log (1/ε)}
iterations to converge up to tolerance ε > 0 [14].

5. SIMULATION RESULTS

We simulated the proposed robust superdirective beamformer
(11) for several different gain values, where the regularization
parameter α(ω) was found using Algorithm 1. All the pre-
sented simulations were performed for a linear microphone
array, with M = 8 microphones and δ = 1 cm. However,
the results are general, and can be repeated for other config-
urations. In Figure 1(a)–(c) we show the SNR gain alongside
the DF and WNG of the proposed beamformer, when set to a
constant desired gain level. It can be seen that the gain value
can be set as desired within the appropriate range. Although
the algorithm converges for every frequency in the range, the
desired gain is not always reached at very low frequencies.
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Fig. 1: Array gains of the proposed beamformer for three cases; fixed SNR gain (a)-(c), fixed WNG (d)-(f) and fixed DF in
multi-bands (g)-(i). All three cases are compared to the DS and superdirective beamformers, the latter two are compared also
to the combined beamformer with ε = 10−4. (a) SNR gain, (b) WNG and (c) DF for fixed SNR gain. (d) SNR gain, (e) WNG
and (f) DF with desired WNG set to −10 dB. (h) SNR gain, (g) WNG and (i) DF with desired DF gain set to 4, 10, and 14 dB
in multi-bands.

This is due to the constant regularization (of 10−14), which
is added to avoid singularity issues while inverting Γd at low
frequencies. In those low frequencies, the constant regular-
ization is more dominant than α(ω), hence the desired gain
is not reached. While achieving the fixed SNR gain under the
combined noise field, the proposed beamformer also performs
well under diffuse noise. However, white noise may still be
amplified to intolerable levels.

To continue and improve the WNG, a modified optimiza-
tion problem can be defined, which maximizes the SNR gain
under a constant WNG. As depicted in Figure 1(d)–(f), our
approach yields an accurate solution for this scenario as well
(using Algorithm 1 from step 4). Furthermore, it can be
seen that the proposed beamformer outperforms the com-
bined beamformer [7] with ε = 10−4. That is, the proposed
beamformer has a higher DF for a fixed WNG given a similar
setup. Taking this approach one step further, we design a
multi-band fixed beamformer. This way, we can constrain the
DF to be piece-wise constant gradually increasing in steps,
thus considering the WNG-DF trade-off at each frequency
band separately. The proposed approach yields accurate re-

sults both for the fixed bands and transition areas, as can be
seen in Figure 1(g)–(i). A similar analysis can be done to
design a multi-band fixed WNG beamformer.

6. CONCLUSION

We have introduced an optimal robust beamformer and a com-
putationally efficient algorithm for finding its regularization
parameter. We showed that our approach facilitates the de-
sign of beamformers with fixed SNR gain, beamformers with
maximal SNR gain for constant WNG or DF, and multi-band
fixed beamformers. The proposed design method enables a
fine tuning of the compromise between the DF and robustness
against white noise.

Several issues should be further investigated. The pro-
posed beamformer should be tested for various angles of in-
cidence, and not only in the end-fire direction. Also, it may
be useful to incorporate additional considerations into the de-
sign process, such as side-lobe requirements and performance
under other types of noise fields.
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