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ABSTRACT

Voice activity detection (VAD) has attracted significant research ef-
forts in the last two decades. Despite much progress in designing
voice activity detectors, voice activity detection in presence of tran-
sient noise and low SNR is a challenging problem. In this paper, we
propose a new VAD algorithm based on supervised learning. Our
method employs Laplacian pyramid algorithm as a tool for function
extension. We estimate the likelihood ratio function of unlabeled
data, by extending the likelihood ratios obtained from the labeled
data. Simulation results demonstrate the advantages of the proposed
method in transient noise environments over conventional statistical
methods.

Index Terms— Voice activity detection, Likelihood ratio func-
tion, transient noise, Laplacian pyramid algorithm

1. INTRODUCTION

Voice activity detection (VAD) is required in many speech com-
munication applications, such as speech recognition, speech cod-
ing, hands-free telephony, speech enhancement and echo cancella-
tion. Elementary VAD algorithms rely on averaged parameters over
frames such as zero crossing rate, pitch period, autocorrelation coef-
ficients, energy levels, etc. These methods have applicable results for
clean speech signals, but in noisy environments their performance
severely degrades. To overcome this shortcoming, several statis-
tical model based VAD algorithms have been proposed in the last
two decades. Sohn et al. [1] assumed that the spectral coefficients
of the noise and speech signal can be modeled as complex Gaus-
sian random variables, and developed a VAD algorithm based on the
likelihood ratio test (LRT). Following their work, researchers tried to
improve the performance of model-based VAD algorithms by assum-
ing different statistical models for speech signals, see [2, 3, 4, 5, 6].
While these methods perform well in stationary noisy environments,
as long as the signal-to-noise ratio (SNR) is not too low, their per-
formances degrade significantly in presence of transient noise, such
as coughing, sneezing, keyboard strokes and door knocking sounds.

In this paper, we present a new supervised learning VAD algo-
rithm based on the Laplacian pyramid algorithm. Training data is
used for estimating the parameters of the similarity matrix kernel
and for the Laplacian pyramid representation. The training data is
also used in finding two Gaussian mixture models for modeling the
first two eigenvectors of the Laplacian of the similarity matrix cor-
responding to the first two leading eigenvalues of the normalized
Laplacian matrix. Upon receiving new unlabeled data, the Lapla-
cian pyramid algorithm is used for evaluating the likelihood ratio.
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The final VAD is obtained by comparing that likelihood ratio to a
threshold.

The rest of this paper is organized as follows. In Section 2, we
formulate the voice activity detection problem in transient noisy en-
vironments and introduce our VAD. Simulation results and perfor-
mance evaluation are presented in Section 3. Finally, we conclude
the paper in Section 4.

2. PROBLEM FORMULATION

Let xsp(n) denote a speech signal and let xtr(n) and xst(n) denote
the additive contaminating transient and stationary noise signals, re-
spectively. The signal measured by a microphone is given by

y(n) = xsp(n) + xtr(n) + xst(n). (1)

The goal is to determine whether there exists a speech signal in a
given time frame (each approximately 16-20 msec long).

2.1. Feature Selection

The main purpose in feature representation is to encapsulate the rel-
evant characteristics of a speech signal for the detection process.
Here we choose absolute value of Mel-frequency cepstrum coeffi-
cient (MFCCs) and the arithmetic mean of the log-likelihood ratios
for the individual frequency bins as our feature space. The likeli-
hood ratio has been long exploited as a feature for voice activity
detection in presence of stationary noise [1, 2, 3, 4, 5]. MFCC is a
representation of the short-term power spectrum of a sound, based
on a linear cosine transform of a log power spectrum on a nonlinear
Mel scale of frequency. MFCCs are commonly used as features in
speech recognition systems. Combining these two features appropri-
ately, would be a suitable feature space for voice activity detection
in presence of transient noise. See [7] for a discussion on this issue.
The feature vector for frame t is defined as column concatenation of
two components as follows

Y (:, t) =

[
Ym(:, t)

Λt

]
(2)

where Ym(:, t) is the absolute value of MFCCs and Λt is the arith-
metic mean of the log-likelihood ratios for the individual frequency
bands in frame t.

2.2. Training Stage

The first stage in our learning algorithm is calculating the likelihood
ratio function for training data. The second stage is extraction of
essential parameters needed for the Laplacian pyramid algorithm.
Suppose that we have a database of clean speech signal, a database



of transient noise and a database of stationary noise. We choose L
different signals from each database and combine them as follows.
Let x`sp(n), x`tr(n), x`st(n) be the `-th speech signal, transient noise,
and stationary noise, respectively. Without loss of generality, we
assume that all of these signal are of the same length (i.e. N`). We
build the `-th training sequence, Y `, as follows. Let

x`1(n) = x`sp(n) + x`st(n), (3)

x`2(n) = x`tr(n) + x`st(n), (4)

x`3(n) = x`sp(n) + x`tr(n) + x`st(n), (5)

and let Y `
1 , Y `

2 , Y `
3 be the feature matrix extracted using (2) from

x`1(n), x`2(n), x`3(n), respectively, and Y ` be the row concatenation
of these matrices. For each frame t, in the training sequence l we
compute an indicator vector as follows

C`
t =

{
1 P (X`

sp(:, t)) > δsp
0 otherwise (6)

where X`
sp(:, i) is short time fourier transform (STFT) of x`sp(n),

δsp is a threshold and P (.) is the power calculation operator. The
most important issue in every kernel based method (e.g. spectral
clustering) is defining an appropriate kernel which preserves the sim-
ilarity between points. For our problem we define the parametric
kernel as follows:

W `
θ (i, j) = exp

(
P∑

p=−P

−αpQ(i+ p, j + p)

)
(7)

Q(i, j) = ‖Y `
m(:, i)

(
1− exp(−Λ`i /ε)

)
−

Y `
m(:, j)

(
1− exp(−Λ`j/ε)

)
‖22 (8)

where θ = [ε, α−P , α−P+1, · · · , αP−1, αP ] ∈ R2P+2 is a vector
of parameters, Y `

m(:, i) and Λ`i are the absolute value of the MFCC
and the arithmetic mean of log likelihood ratios for the individual
frequency bands of the `-th training sequence in frame i, respec-
tively. The choice of weight matrix is taken into account the fol-
lowing issues. The first one is the similarity between two individual
frames, and the second one is the effect of neighboring frames on de-
ciding whether a specic frame contains speech or transient noise. By
Combining the two features (MFCC and likelihood ratio) as in (7)-
(8) lead to a good metric utilized as a similarity notion between two
frames for voice activity detection in noisy environment. Moreover,
it can be seen from (8) that when the current frame is a non speech
frame, the value of the likelihood ratio is around zero. Hence, the
term

(
1− exp(−Λ`j/ε)

)
‖22 tend to 1 and the similarity matrix is de-

pend only on the MFCC. The kernel parameters can be obtained by
solving the following optimization problem [8]

θopt = arg min
θ

1

L

L∑
`=1

F (W `
θ ,C

`) (9)

F (W ,C) =
1

2

∥∥∥ΥΥT −D1/2C(CTDC)−1CTD1/2
∥∥∥2
F

where L is the number of training sequences, (·)T denotes transpose
of a vector or a matrix, Υ is an approximate orthonormal basis of the
projections on the second principal subspace of D−1/2WD−1/2

obtained by classical orthogonal iteration [9]. In practice we use
the gradient method (e.g. fminunc or fmincon functions in Matlab if

there exists any constraint on the parameters) to solve this minimiza-
tion problem. Let W `

θopt be the similarity matrix of the `-th train-
ing sequence and U` be a matrix consisting of the two eigenvectors
ofD`−1/2

W `D`−1/2
corresponding to the first two largest eigen-

values, where D is a diagonal matrix whose i-th diagonal element
equals to

∑N
j=1W (i, j). Suppose we have L training sequences,

let the column concatenation of U1 through UL be U . In fact, the
matrix U is a new representation of the training data such that each
row of U corresponding to a specific training frame. For further
information, see [7]. Now, we use Gaussian mixture modeling to
model each cluster (i.e. speech presence or absence) with a differ-
ent Gaussian Mixture Model (GMM). For each cluster we find the
rows of the matrix U corresponding to that cluster using an indica-
tor vector. Then by exploiting the Expectation-Maximization (EM)
algorithm and Bayesian information criterion (BIC), we fit GMMs
in those clusters. This means that we model the low dimensional
representation of the original data using two different GMMs, one
for each cluster. The likelihood ratio for each labeled frame t is then
obtained by

Γtrain
t =

f (U(t, :);H1)

f (U(t, :);H0)
(10)

where U(t, :) is the t-th row of the matrix U , and H1 and H0 are
the speech presence and absence hypotheses, respectively. The sec-
ond stage as mentioned earlier is an implementation of the Laplacian
pyramid algorithm. The algorithm used here is based on [10]. The
Laplacian pyramid is a multi-scale algorithm for extending an empir-
ical function f , which is defined on a dataset A, to new data points.
In our case, this function is the likelihood ratio function (Γtrain), and
the dataset A is the collection of the labeled feature vectors.

First, we represent our likelihood function in different resolu-
tions approximated by mutual distances between the data points. In
order to emphasize the mutual distances between the feature vec-
tors we use the same kernel as formulated in (7)-(8). The similarity
matrix for each resolution level v = 0, 1, .. is given by

W v
θ (i, j) = exp

(
P∑

p=−P

−αpQ
v(i+ p, j + p)

)
(11)

Qv(i, j) = 2v‖Ym(:, i) (1− exp(−Λi/ε))−
Ym(:, j) (1− exp(−Λj/ε)) ‖22 (12)

and the smoothing operatorKv(i, j) is defined by

Kv(i, j) =
W v

θ (i, j)∑n
j=1W

v
θ (i, j)

(13)

where n is the number of training frames. The Laplacian pyramid
representation is calculated iteratively as follows

s0(t) =

n∑
j=1

K0(t, j)Γtrain
j (14)

sv(t) =

n∑
j=1

Kv(t, j)dv(j). (15)

The differences are given by

dv = Γtrain −
v−1∑
i=0

si (16)

and are used as inputs to the Laplacian pyramid algorithm at level
v. The iterations in (15) stop when |dv| is smaller than a certain
threshold.



2.3. Testing Stage

During testing, our goal is to decide whether a given unlabeled frame
contains speech or not. Mousazadeh and Cohen [7] suggested to rep-
resent the unlabeled data in terms of eigenvectors of the normalized
Laplacian of the similarity matrix of the training data using Nysröm
extension and computing the likelihood ratio as follows

Γtest
t =

f (Ũ(t, :);H1)

f (Ũ(t, :);H0)
(17)

where Ũ(t, :) is the t-th row of the new representation of the unla-
beled data in terms of eigenvectors of the normalized Laplacian of
the similarity matrix. In our algorithm, we propose to approximate
the likelihood ratio function using the Laplacian pyramid algorithm
which might be more accurate, requires less training files and has
better performance in low SNR. LetZ(:, t) be the feature matrix for
the t-th unlabeled frame. For each resolution level v, the similarity
matrix between the new data and labeled data is computed as follows

W v
θ (i, j) = exp

(
P∑

p=−P

−αpQ
v(i+ p, j + p)

)
(18)

Qv(i, j) = 2v‖Ym(:, i) (1− exp(−Λi/ε))− (19)
Zm(:, j) (1− exp(−Λj/ε)) ‖22.

Yet, the likelihood function of labeled frames in different resolutions
is given by

sun0 (t) =

n∑
j=1

K0(t, j)Γtrain
j (20)

sunv (t) =

n∑
j=1

Kv(t, j)dv(j). (21)

when the smoothing operator is calculated as in (13). The likelihood
ratio of the t-th frame is then evaluated by

Γtest
t =

v−1∑
k=0

sunk (t). (22)

Using the fact that frames containing speech are usually followed by
a frame which also contains speech the transient signals usually last
for few time frames, the decision rule for an unlabeled frame is given
by

VA =

J∑
j=−J

Γtest
t+j

H1

≷
H0

Th t = 1, 2, · · · , T (23)

where Th is the threshold which controls the tradeoff between prob-
ability of detection and false alarm. Increasing (decreasing) this pa-
rameter leads to decrease (increase) of both the probability of false
alarm and the probability of detection.

3. SIMULATIONS RESULTS

In this section, we examine the performance of the proposed method
using several simulations. We compare the performance of our
method to those of conventional statistical model-based methods
presented in [1, 2, 3, 6] and VAD based spectral clustering pre-
sented in [7]. The simulation setup is as follows. We perform our
simulation for different types of stationary and transient noise and
for different SNR levels. We use different data within the training

and testing phases, 5 training sequences and 30 testing sequences.
Speech signals are taken from the TIMIT database [11], and transient
noise signals are taken from [12]. The sampling frequency is 16kHz.
We use STFT with frame length of 512 samples, with 50% overlap
and a hamming window. We compute the MFCC in Km = 24
Mel frequency bands and the a-priori threshold used in the Lapla-
cian pyramid algorithm is set to be 10−5. In order to compare our
method to a conventional statistical based method, we introduce two
different kinds of false alarm probabilities. The first one denoted by
Pfa is defined as the probability that a speech free frame is detected
as a speech frame. The second one denoted by Pfatr is defined as
the probability that a frame consisting of stationary and transient
noise is detected as a speech frame. We need these two concepts to
show the advantage of the proposed method over conventional sta-
tistical model-based methods. The number of frames which contain
transient noise (which are mostly detected as speech in statistical
model-based methods) is small with respect to the total number of
frames. Such frames do not affect the probability of false alarm
significantly if it is defined as the probability that a noise frame is
detected as a speech frame. In all of the following simulations we set
the parameter vector to θ = .001× [300 0.4 0.75 1 0.75 0.4].

The simulation results are presented in Figure 1. Although dif-
ferent statistical model based methods have different performances
in different situations, the proposed method has superior perfor-
mance in all simulations over the compared statistical model based
methods, particulary for low false alarm rates. When compared to
the method presented in [7], our method has better performance
when the number of training sequences is small and when the SNR
is low.

4. CONCLUSIONS

We have proposed a new voice activity detector based on Laplacian
pyramid. Our main concern was dealing with low SNR transient
noise conditions, which are difficult to handle. Conventional statis-
tical model based methods fail in these situations. Simulation re-
sults have demonstrated the improved performance of the proposed
method and particularly its advantage in treating transient noise us-
ing only few training sequences.
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Fig. 1: Pd versus Pfa (left column), Pd versus Pfatr (right column) for different noise environments. Figures (a)-(b): SNR = 0dB, stationary
noise - white Gaussian, transient noise - keyboard stroke. Figures (c)-(d): SNR = 10dB, stationary noise - babble noise, transient noise -
keyboard stroke. Figures (e)-(f): SNR = 20dB, stationary noise - colored noise, transient noise - door knocks.
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