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ABSTRACT

In this paper, we evaluate a speech bandwidth extension (BWE) al-
gorithm which involves phonetic and speaker dependent estimation
of the high-band part of the spectral envelope. The BWE algorithm
extracts speech phoneme information by using a hidden Markov
model. Speaker vocal tract shape information corresponding to the
wideband signal is extracted by a codebook search. Postprocessing
of the estimated vocal tract shape using iterative tuning allows arti-
facts reduction in cases of erroneous estimation of speech phoneme
or vocal tract shape. We present objective measurements results
demonstrating the benefit of the iterative tuning. Subjective listening
tests illustrate improved wideband quality in comparison to the input
narrowband speech. The algorithm complexity is also analyzed.

Index Terms— Bandwidth extension, speech processing, vocal
tract area function, sensitivity function, MUSHRA.

1. INTRODUCTION

Current public switched telephone networks (PSTN) limit the band-
width of the speech signal to 0.3-3.4 kHz. This narrowband (NB)
limitation results in degradation of speech quality. Wideband (WB)
speech signal with bandwidth limitation of 0.05-7 kHz achieves high
quality speech. A BWE algorithm estimates the WB speech signal
by artificially extending the NB speech signal to high-band (HB) fre-
quencies from 3.4 kHz to 7 kHz [1]. This technique is transparent to
the transmitting network, as it is implemented only at the receiving
end. The estimation of the HB spectral envelope and its gain is the
most crucial stage for a high quality BWE algorithm [2, 3]. The HB
extension of the spectral envelope aims to enhance speech quality, as
well as intelligibility. The HB spectral envelope gain may affect the
level of artifacts, interpreted as quality degradation.

Recently, we have presented a BWE approach using phonetic
and speaker dependent information for HB spectral envelope estima-
tion [3]. The first estimation step employs a hidden Markov model
(HMM) to classify each speech frame to a specific phoneme type.
The second step finds a speaker specific WB spectral envelope by
WB vocal tract area function (VTAF) shape estimation from the cal-
culated NB VTAF shape. A postprocessing step, involving iterative
modification of the estimated WB VTAF, allows better gain adjust-
ment and smoothing in time of the estimated spectral envelope. A
preliminary evaluation of the algorithm was presented in [3]. It in-
cluded the log spectral distance (LSD) of the estimated HB power
spectrum and the estimation error of the HB estimated formant fre-
quencies.
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In this paper, we further evaluate the performance of the BWE
approach presented in [3]. A spectral distortion measure (SDM) [1]
is used to evaluate the importance of the iterative postprocessing step
for quality improvement. A formal subjective listening test indicates
the significance of the algorithm in enhancing the input NB speech.
Complexity analysis of the algorithm allows to evaluate the feasibil-
ity of the algorithm implementation in real-time applications.

The paper is organized as follows. In Section 2, we summarize
the BWE algorithm proposed in [2, 3]. In Section 3, we present the
experimental evaluation results. Finally, in Section 4, we draw our
conclusions.

2. BWE ALGORITHM OVERVIEW

In this section, we describe the method for estimating the WB
speech signal from the input NB signal. The general BWE algo-
rithm scheme is presented in Fig. 1. The system can be divided into
four stages which are described in the following subsections.

2.1. Preprocessing and Feature Extraction

Stage I carries out preprocessing and feature extraction. The re-
ceived NB speech signal, sNB (n) with sample index n, is upsam-
pled to 16 kHz sampling rate and filtered through a low pass fil-
ter with 4 kHz cutoff frequency and 10 dB boost at 300 Hz. This
equalization adds naturalness to the NB signal. Three sets of fea-
tures are extracted from the upsampled and equalized speech frame.
The first feature vector, x1, contains spectral information including
Mel-frequency cepstral coefficients. Its purpose is to allow good
separation of different speech classes that give different HB spectral
envelope shapes. The second feature vector, x2, contains the area
coefficients that represent the speaker’s VTAF shape, which is used
for WB VTAF estimation. The last extracted feature vector, x3, is
the NB excitation, which is used for WB excitation generation.

2.2. WB Spectral Envelope Estimation

In Stage II of the algorithm, the estimation of the WB spectral enve-
lope φ̃WB (k), with frequency index k, is performed. It is calculated
in a three-step process.

2.2.1. Speech State Estimation

In the first step, the speech state which represents a specific speech
phoneme is estimated using an HMM-based statistical model. The
HMM statistical model was trained offline using the TIMIT tran-
scription. Each frame was associated with a state Si (m) , i =
1, . . . , Ns, which represents a speech phoneme (one state for each
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Fig. 1. Block diagram of the proposed BWE algorithm.

phoneme), where i is the state index, Ns is the number of states
and m is the current frame time index. From the training database,
the state Si and the feature vector x1 of each speech frame were
extracted. The following probability density functions (PDFs) were
calculated:

• p (Si) - Initial probability of each state.

• p (Si |Sj ) - Transition probability from state j to state i.

• p (x1 |Si ) - Observation probability for each state, approxi-
mated by Gaussian mixture model (GMM) parameters with
Ng mixtures.

In the application phase, the state probabilities for an input
speech frame are extracted from the a-posteriori PDF. We denote the
observation sequence of the first feature vector x1 up to the current
frame as X1 (m) = {x1 (1) ,x1 (2) , . . . ,x1 (m)}. The condi-
tional probability p (Si (m) |X1 (m) ) expresses the a-posteriori
probability. It is recursively calculated for each state by

p (Si (m) |X1 (m) ) = C1 · p (x1 (m) |Si (m) ) ·
Ns∑
j=1

p (Si (m) |Sj (m− 1) ) p (Sj (m− 1) |X1 (m− 1) ) ,
(1)

where C1 is a normalization factor. The calculated state probabilities
are used for WB VTAF estimation in the following step.

2.2.2. Wideband VTAF Estimation

The WB VTAF, ÃWB, is estimated in the second step, from the cal-
culated NB VTAF. We use a second statistical model that incorpo-
rates a set of WB VTAF codebooks (CBs). For each of the Ns states,
we have a CB with NCB entries. The CBs were trained offline with
real WB VTAF data, extracted from the TIMIT train database. We
denote the calculated NB VTAF as ANB and the CB entries corre-
sponding to the estimated state Si as ASi

WB (j) , j = 1, . . . , NCB.

The optimal WB VTAF ÃSi
WB for the estimated state in frame m

is picked by minimizing the Euclidean distance between ANB and
ASi

WB (j) , j = 1, . . . , NCB :

ÃSi
WB = ASi

WB

(
jopt

)
,

jopt = arg
NCB

min
j=1

∥∥∥log (ANB (m))− log
(
ASi

WB (j)
)∥∥∥2

2
.

(2)

In-order to reduce artifacts due to erroneous state estimation, we use
Nbest states with the highest a-posteriori probability p1, . . . , pNbest

for WB VTAF estimation. This is done by a weighted average of the
corresponding values from (2).

2.2.3. Postprocessing

Postprocessing of the estimated WB VTAF, in the third step, allows
better gain adjustment and smoothing in time of the estimated WB
spectral envelope. Better gain adjustment is achieved by fitting the
lower band of the estimated WB spectral envelope to the calculated
NB spectral envelope. Better smoothness in time is achieved by re-
ducing time discontinuities of the estimated WB spectral envelopes.

We denote the formant frequencies of the NB and the estimated
WB spectral envelopes by fNB and f̃WB, respectively. The shape
fitting of the estimated WB spectral envelope is conducted by tuning
the lower subset of f̃WB to fNB. The tuning is done iteratively by
perturbing the WB VTAF area coefficients [2, 3]. The VTAF is per-
turbed by using a sensitivity function [6]. The sensitivity function
relates small changes in VTAF to changes in formant frequencies.
We denote the VTAF values by AnA , nA = 1, . . . , NA, where NA

is the number of area coefficients. The spectral envelope formant
frequencies are denoted by fnf , nf = 1, . . . , Nf , where Nf is
the number of formant frequencies. The sensitivity function Snf ,nA

relates a small change in fnf to incremental changes in the area co-
efficients, via:

Δfnf

fnf

=

NA∑
nA=1

Snf ,nA

ΔAnA

AnA

. (3)

Here we set Δfnf to be the difference between the desired formant
frequency and the current formant frequency. Thus, ΔAnA is the
needed perturbation in the value of area coefficient number nA.

The goal of each iteration is to minimize the difference between
the calculated and the estimated NB formant frequencies. The stop-
ping condition for the iterative process is the reaching of an allowed
deviation, Δfd, between fNB and the corresponding lower subset
of f̃WB. No improvement in the frequencies deviation may imply
a convergence problem and a large estimation error of the spectral
shape. Hence, the estimated WB VTAF is updated only when the av-
erage frequencies deviations in the current iteration is smaller than
that of the previous update. On average, 3.6 iterations were per-
formed for each processed frame using Δfd = 50 Hz. About 30%
of the frames were processed using only one iteration. About 45%
of the frames needed two to four iterations.

Next, smoothing in time is performed on the estimated WB
VTAF under the assumption of physical continuity of vocal tract
shape in time. Gain adjustment is performed by first converting the
smoothed estimate of the WB VTAF to a WB spectral envelope. The
calculated WB spectral envelope can now be gain-adjusted to match
the energy of the input NB spectral envelope in its lower band.

2.3. WB Excitation Generation

In Stage III of the algorithm, the WB excitation, ŨWB (k) is gener-
ated. The HB excitation is generated using a simple spectral copy of
the calculated NB excitation.

2.4. WB Speech Synthesis

In the last stage of the algorithm, Stage IV, the output WB speech
signal s̃WB (n) is synthesized. The estimated final HB spectral en-
velope is used to shape the generated excitation in the frequency



domain. This provides a HB speech component that is then concate-
nated in the frequency domain to the original NB signal to create the
estimated WB signal.

3. PERFORMANCE EVALUATION

To evaluate the algorithm performance, objective and subjective
quality measurements were used. The BWE algorithm was im-
plemented using Matlab�. The following parameters were used:
number of states Ns = 61 (symbols in the TIMIT lexicon), number
of Gaussians per state Ng = 16 (as in [4]), number of CB entries
per state NCB = 16, number of VTAF area coefficients NA = 16
(as in [5]), and number of states for VTAF estimation Nbest = 5.
The TIMIT WB training database, including 4620 sentences, was
used for training both the HMM and the CB statistical models. The
TIMIT WB test database, including 1680 sentences, was used as an
input to the proposed algorithm after being preprocessed by a tele-
phone channel filter and down-sampled to 8 kHz. From the BWE
processed signals and their original WB counterparts the following
quality measurements were performed.

3.1. Objective Evaluation

In order to evaluate the significance of the iterative postprocessing
step for quality improvement, the spectral distortion measure (SDM)
[1] was used. This measure is a nonsymmetric weighted LSD. The
distortion is generally calculated by using a decaying exponential
for increasing frequencies and by giving higher penalty for spectral
over-estimation than for under-estimation. The SDM measure for
the mth frame is calculated by:

SDMm =
1

khigh − klow + 1

khigh∑
k=klow

ξm (k) , (4)

where the distortion is calculated using the fast Fourier transform
(FFT) bin indices from klow to khigh and ξm (k) is calculated as:

ξm (k) =

{
Δm (k) · exp {αΔm (k)− βk} , if Δm (k) ≥ 0

ln (−Δm (k) + 1) · exp {−βk} , else

Δm (k) = 10 log10
φ̃m(k)
φm(k)

,

where α and β are the weighting factors, φm is the spectral envelope
of the original WB frame, and φ̃m is the spectral envelope of the
corresponding BWE frame.

The motivation for using this measurement is the fact that high-
frequency distortion is less significant for human perception. An-
other important issue that this measure deals with is giving more
weight to the estimated spectrum above the magnitude of the origi-
nal one. Overestimated HB energy leads to undesirable audible ar-
tifacts that in the opposite case (of underestimation) does not cause
any artifacts [7].

The SDM measure was computed between the original WB
spectral envelopes and the estimated spectral envelopes, with and
without the iterative postprocessing step. This measure was taken
only for voiced estimated frames using the HMM phoneme estima-
tion output. The SDM parameters were set to α = 0.1 and β = 5.
The distortion was calculated using the FFT bin indices from klow
to khigh, corresponding to the frequency range from 3.4 to 8 kHz.

The mean SDM and LSD of the entire test database are pre-
sented in Table 1. It can be seen that the iterative postprocessing
step improves the quality of the estimated spectral envelope and
hence reduce the SDM. It is also noticeable from the SDM and

Table 1. Average SDM and LSD of estimated spectral envelope with
and without the iterative postprocessing step.

Measured SDM [dB] LSD [dB]
Without iterative process 13.64 9.98

With iterative process 9.89 9.91

LSD results that the achieved improvement of the iterative process is
clearly seen in the SDM results and barely seen in the LSD results.
This means that the postprocessing step reduces the spectral enve-
lope over-estimation and reduces distortion in the low part of the HB
frequencies which are more significant for human perception.

3.2. Subjective Evaluation

The chosen subjective measure in this research is the multistimulus
test with hidden reference and anchors (MUSHRA) test [8]. In this
test a person grades the processed speech test sentences in compar-
ison to a reference sentence. The test sentences include all the sen-
tences under test, an anchor sentence which should have the lowest
quality compared to the reference sentence, and a hidden reference
sentence similar to the reference sentence. This hidden reference is
used for post-screening of subjects that gave a low grade to the hid-
den reference. All the test sentences can be replayed by the listener
at will. The main advantage of the MUSHRA test over the mean
opinion score (MOS) test is that it is easier to perform, as it requires
fewer participants to obtain statistically significant results [2]. This
test also allows finer measurements of small differences because of
the 0-100 score scale.

The MUSHRA test was performed by 11 listeners. The test in-
cluded 6 different experiments, each with a different English sen-
tence, 3 by male and 3 by female. Every experiment included mul-
tiple conditions of the sentence: a WB reference speech signal, a
NB anchor speech signal, the proposed BWE speech signal and a
reference BWE speech signal. The reference BWE speech signal
was based on the algorithm from [4] with some unpublished im-
provements made by Bernd Geiser until 2010. In the test, the listen-
ers compared multiple conditions of a sample at the same time, and
could repeat the samples. The listeners could also repeat the refer-
ence when they wanted. The test produced results for the conditions
between 0 and 100, with 100 being same quality as the reference
speech signal.

The results of the MUSHRA test are presented in Fig. 2. The
obtained results indicate that the proposed BWE algorithm improves
the received NB signal. It also exhibits some improvement over the
reference algorithm results.

3.3. Complexity Evaluation

The algorithm was also examined for its complexity. The goal of this
examination is to detect the most complex stages in the algorithm.
This examination was performed by measuring the Matlab process-
ing time of each major algorithm processing block, running on an
Intel CPU at 2.66 GHz clock speed. The results were averaged over
the entire speech frames of the TIMIT test database. The distinct
blocks are:

• Preprocessing and feature extraction as described in Subsec-
tion 2.1.

• State estimation as described in Subsection 2.2.1.

• WB VTAF estimation as described in Subsection 2.2.2.



Fig. 2. MUSHRA subjective measure score.

• An iterative tuning process as described in Subsection 2.2.3.

• Gain adjustment as described in Subsection 2.2.3.

• WB excitation generation as described in Subsection 2.3.

• The WB speech synthesis as described in Subsection 2.4.

The obtained results are presented in Table 2. The results indi-
cate the average processing time of a 20 msec speech frame. The
results reveal that the HMM-based state estimation step in the WB
spectral envelope estimation stage consumes the most processing
time. This is mainly because of the GMM probability values calcu-
lation. The postprocessing step also exhibits high computation load
due to the online sensitivity function calculation, which consumes
about 85% of this step processing time.

4. CONCLUSION

We have presented a performance evaluation of the BWE algorithm
proposed in [3]. The algorithm was evaluated by objective and sub-
jective measurements. The SDM between the estimated HB spectral
envelope and the original HB spectral envelope shows improved re-
sults of about 4 dB for frames which were postprocessed using the
iterative tuning compared to those that were not. These results il-
lustrate the effectiveness of the iterative tuning process in reducing
estimation artifacts and especially in reducing gain over-estimation.
The MUSHRA subjective listening tests show improved quality of
the enhanced speech. An improvement of more than 15 points com-
pared to the input NB speech illustrates the advantage of using the
proposed BWE algorithm when using telephone networks that limit
speech bandwidth to the NB frequency range. The proposed BWE
algorithm could be used to improve the call quality in the period
of transition to WB supported networks. Complexity evaluation of
the algorithm main building blocks showed the high complexity of
the phoneme estimation step and the iterative processing block of
the postprocessing step, both in the WB spectral envelope estima-
tion stage. The high complexity of the state probabilities calcula-

Table 2. Average processing time of a 20 msec speech frame of main
BWE algorithm processing blocks.

Algorithm Processing Block Computation Time [msec]
Preprocessing and feature extraction 1.27

State estimation 19.39

WB VTAF estimation 0.59

Postprocessing (iterative process) 7.69

Postprocessing (gain adjustment) 0.36

WB excitation generation 0.04

WB speech synthesis 0.57

Total 29.91

tion at the state estimation step and the online sensitivity function
calculation at the postprocessing step, is one of the main algorithm
drawbacks.

Future work might include an offline calculation of the sensitiv-
ity function for each WB VTAF codeword. This will reduce the on-
line computational complexity. Using normalized formant frequency
deviation for the iterative process, might reduce the needed number
of iterations and as a results the processing time, while maintaining
the same postprocessing quality. Using the postprocessing iterative
procedure for better refinement and control of estimated spectral en-
velope by HB formants tuning to past estimated HB formants, could
improve the smoothing in time of the estimated HB spectral envelope
and further improve the speech quality. The algorithm should also
be evaluated using formal listening tests under different background
noise conditions and with different languages. This evaluation would
determine the algorithm robustness to noisy environments and mul-
tiple languages.
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