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Abstract—In this contribution a novel reduced-bandwidth iterative
binaural MVDR beamformer is proposed. The proposed method reduces
the bandwidth requirement between hearing aids to a single channel,
regardless of the number of microphones. The algorithm is proven to
converge to the optimal binaural MVDR in the case of a rank-1 desired
source correlation matrix. Comprehensive simulations of narrow-band
and speech signals demonstrate the convergence and the optimality of
the algorithm.

I. INTRODUCTION

Beamforming [1] is known to outperform single channel algorithms
in noise reduction tasks. Two of the most common beamformers
are the multichannel Wiener filter (MWF), which minimizes the
mean squared error (MSE), and the minimum variance distortionless
response (MVDR), which minimizes the noise variance under the
constraint of no distortion of the desired speech.

A distributed sensor network [2] is comprised of multiple sub-
arrays, each consisting of several sensors, a signal processor and
a wireless communication module. The spatial diversity improves
the signal perception and allows for further improvement compared
with a single array of sensors. Sub-arrays are battery operated in
many cases, and energy resources are the main limitation of the
sensor network structure. Wireless communication is the most energy
consuming operation. Straightforward optimal algorithms which are
based on sharing all sensors data among the sub-arrays lead to a
shorter system lifetime and in many scenarios are unacceptable.

The binaural hearing aid is an example for a sensor network
comprised of two sub-arrays (left and right), each consisting of one or
more microphones. Doclo et al. [3] showed the advantage of binaural
algorithms over monaural algorithms, using data of both laterals
rather than using only local sensors. They proposed the iterative
distributed binaural speech distortion weighted multichannel Wiener
filter (SDW-MWF) which requires transmitting a single audio channel
between laterals. A proof of the algorithm convergence to the optimal
MWF beamformer was given for the scenario of a desired source
correlation matrix with rank-1. Bertrand and Moonen [4] proposed
the distributed adaptive node-specific minimum mean squared error
(MMSE) signal estimation (DANSE) algorithm which required k
transmission channels and extended the iterative distributed SDW-
MWF (DB-MWF) to multiple nodes (sub-arrays) for desired source
correlation matrix with rank-k.

In this contribution, a novel reduced bandwidth iterative algorithm
for a distributed MVDR beamformer with application to binaural
hearing aids is presented. The proposed algorithm requires a single
channel transmission between laterals. It is well known that the
MVDR beamformer is a special case of the SDW-MWF. Here, a
distributed version of the MVDR beamformer is derived directly.
The convergence of the iterative procedure to the binaural MVDR
is proved for a desired source correlation matrix with rank-1. The
proposed method is shown to outperform the monaural MVDR,
where the output is generated by filtering only local sensors, without

communication with the other side.
Maintaining spatial cues is a desired property of any binaural

beamformer. The binaural MVDR maintains the spatial cues of the
desired source as can be deduces from its distortionless response.
However, spatial cues of the interfering sources are not maintained.

The paper is organized as follows. In Sec. II, the binaural hearing
aids problem is formulated. In Sec. III, a closed-form solution for the
binaural MVDR based on all sensors data is derived. In Sec.IV, the
novel reduced bandwidth iterative MVDR algorithm is proposed. The
proof of convergence in the rank-1 scenario appears in the Sec. V.
Finally, the algorithm is evaluated for narrow-band stationary signals,
and for speech signals in reverberant environments in Sec. VI.

Keeping spatial cues is a desired property of any binaural beam-
former. The binaural MVDR keeps the spatial cues of the desired
source directly from its definition. However, spatial cues of interfering
sources are not kept in general.

II. PROBLEM FORMULATION

The problem is formulated in the short-time Fourier transform
(STFT) domain. Consider a desired speech signal s(`, k) impinging
on two microphone arrays in the left and right hearing aid appara-
tuses placed in a reverberant environment. The received signals are
contaminated by a stationary noise v(`, k). From here on we omit the
time and frequency indexes for brevity. The signals received by the
left and right arrays are given by zl = hls+vl and zr = hrs+vr ,
respectively, where hl,hr are the acoustic transfer function (ATF)s
relating the desired source and the left and right arrays. Define the
vectors comprised of a concatenation of the left and right signals
z =

[
zl
T zr

T
]T

= hs + v, where v =
[
vl
T vr

T
]T and

h =
[
hl
T hr

T
]T . Denote the covariance matrix of the received

signals:

Φzz = σ2h†h + Φvv =

[
Φll Φlr

Φrl Φrr

]
(1)

where Φvv = E
[
vv†

]
is the covariance matrix of the stationary

noise. The goal of the standard binaural MVDR beamformer is to
reduce the noise power at two reference microphones at the left and
right apparatuses, by using all microphone data, and while keeping
the desired speech components undistorted. In this contribution a
distributed version of the binaural MVDR problem is addressed.
The solution should limit communication bandwidth between laterals
without sacrificing the performance.

III. CLOSED-FORM BINAURAL MVDR

The binaural MVDR beamformer consists of two beamformers de-
signed for reproducing the desired signal components as received by
reference microphones in each lateral, while minimizing the overall
noise power. The output signals of the closed-form beamformer are
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Fig. 1. Diagram of the distributed binaural MVDR

given by yol = (wol)†z and yor = (wor)†z. The closed-form solution
is given by:

wol =
(

(h̃
l
)†Φzz

−1h̃
l
)−1

Φzz
−1h̃

l
(2a)

wor =
(

(h̃
r
)†Φzz

−1h̃
r
)−1

Φzz
−1h̃

r
(2b)

where the left and right relative transfer function (RTF)s are defined
as:

h̃
l

= (hl,1)−1 h =
[

(h̃
l

l)
T (h̃

l

r)
T
]T

h̃
r

= (hr,1)−1 h =
[

(h̃
r

l )
T (h̃

r

r)
T
]T

The first microphones are arbitrarily chosen as the reference micro-
phones. Throughout this contribution the subscript notations (·)l and
(·)r are used for denoting the vector components corresponding to
the left and right laterals, respectively. The superscript notations (·)l
and (·)r are used to denote variables which are used for calculating
the outputs of the left and right apparatuses, respectively. Note that
the left and right MVDR beamformers are parallel in the rank-1 case.

IV. PROPOSED METHOD

In this section, we introduce a batch iterative algorithm which
converges to the closed-form solution introduced in the previous
section. We assume that the second moments of the observed data
are available or can be estimated without errors. At each iteration,
each side calculates the MVDR beamformer based on its local
microphones and the channel received from the lateral side. Its
contribution to the binaural beamformer is transmitted to the lateral
side which in turn also updates its coefficients in a similar manner.
Each iteration is therefore comprised of updating both left and right
beamformers. A diagram of the algorithm is depicted in Fig. 1.
Consider the ith iteration of the algorithm. Without loss of generality,
we assume that the left side is the first to update its beamformer. The
data available to the left side is its own microphones and the received
channel from the right side in the previous iteration

di−1
r = (wi−1

r )†zr. (3)

The MVDR equation at the ith iteration at the left side is given by[
wi
l

αil

]
= argmin

wi
l
,αi

l

[
wi
l

αil

]†
E

[[
zl
di−1
r

] [
zl
di−1
r

]†] [
wi
l

αil

]
(4)

s.t.
[

wi
l

αil

]† [
h̃
l

l

(wi−1
r )†h̃

l

r

]
= 1.

The last minimization can be reformulated as a constrained minimiza-
tion of the binaural MVDR, where the right coefficients are constant

up to a scaling factor αilw
i−1
r :[

wi
l

αil

]
= argmin

wi
l
,αi

l

[
wi
l

αilw
i−1
r

]†
Φzz

[
wi
l

αilw
i−1
r

]
(5)

s.t.
[

wi
l

αilw
i−1
r

]†
h̃
l

= 1.

The minimization is performed by using Lagrange multipliers. Define
the Lagrangian of the left side:

Ll(wi
l, α

i
l , λ

i
l) =

[
wi
l

αilw
i−1
r

]†
Φzz

[
wi
l

αilw
i−1
r

]
+ λil

([
wi
l

αilw
i−1
r

]†
h̃
l − 1

)

+ (λil)
∗
(

(h̃
l
)†
[

wi
l

αilw
i−1
r

]
− 1

)
. (6)

Minimizing (6) is performed by solving the partial derivatives
∂Ll

∂(wi
l
)†

= 0, ∂Ll

∂(αi
l
)∗

= 0, ∂Ll

∂(λi
l
)∗

= 0 and is given by:

λil =

(
−‖h̄l,il ‖2

(Φ̄
i

ll)
−1
− ‖(h̃lr)†wi−1

r ‖2

(wi−1
r )†Φrrw

i−1
r

)−1

(7a)

wi
l =λil(Φ̄

i
ll)
−1h̄

l,i
l (7b)

αil =− (wi−1
r )Φrlw

i
l + λil(w

i−1
r )†h̃

l

r

(wi−1
r )†Φrrw

i−1
r

(7c)

where

Φ̄
i
ll =Φll −

Φlrw
i−1
r (wi−1

r )†Φrl

(wi−1
r )†Φrrw

i−1
r

(8a)

h̄
l,i
l =

(wi−1
r )†h̃

l

rΦlrw
i−1
r

(wi−1
r )†Φrrw

i−1
r

− h̃
l

l (8b)

and the matrix norm with respect to the matrix A is denoted by
‖ · ‖A. Note that the second moments required for the calculation
are available since

Φlrw
i−1
r =E

[
zl(d

i−1
r )∗

]
(wi−1

r )†Φrrw
i−1
r =E

[
‖di−1
r ‖2

]
.

The expression (wi−1
r )†h̃

l

r =
(wi−1

r )†hr

hl,1
equals the RTF between

the desired source components at di−1
r and zl,1. It can be estimated

by exploiting the non-stationarity of speech or by the generalized
eigenvalue decomposition (GEVD). The minimization of the right
Lagrangian is solved in a similar manner. The algorithm is summa-
rized in Alg. 1, where we also define

Φ̄
i
rr =Φrr −

Φlrw
i
l(w

i
l)
†Φlr

(wi
l)
†Φllwi

l

(9)

h̄
r,i
r =

(wi
l)
†h̃

r

lΦrlw
i
l

(wi
l)
†Φllwi

l

− h̃
r

r. (10)

The algorithm is initialized with the monaural MVDR on the left
side. In the following section the proposed algorithm is proved to
converge to the binaural MVDR beamformer in the rank-1 case.

V. CONVERGENCE OF THE DISTRIBUTED MVDR TO THE

BINAURAL MVDR

The variance of the MVDR output is denoted by J (w) =
w†Φzzw. Consider the ith iteration at the left side J

(
wl,i

)
, where

wl,i =
[

(wi
l)
T αi(wi−1

r )T
]T . By manipulation of the left



constraint (wl,i)†h̃
l

= 1 we obtain that
(

(h̃rl,1)∗wl,i
)†

h̃
r

= 1.

Since (h̃rl,1)∗wl,i belongs to the minimization range of the right side,
the MVDR variance after updating the right weight coefficients (at the
ith iteration) is upper bounded by J

(
wr,i

)
≤ J

(
(h̃rl,1)∗wl,i

)
=

|(h̃rl,1)|2J
(
wl,i

)
, where wr,i =

[
ari(wi

l)
T (wi

r)
T

]T
. By

manipulation of the right constraint (wr,i)†h̃
r

= 1 we obtain

that
(

(h̃lr,1)∗wr,i
)†

h̃
l

= 1. Therefore the MVDR variance after
updating the left weight coefficients (at iteration i + 1) is upper
bounded by J

(
wl,i+1

)
≤ J

(
(h̃lr,1)∗wr,i

)
= |(h̃lr,1)|2J

(
wr,i

)
.

We therefore obtain the following inequality J
(
wl,i+1

)
≤

|(h̃lr,1)|2|(h̃rl,1)|2J
(
wl,i+1

)
, and since h̃lr,1 = (h̃rl,1)−1 we conclude

that the variance of the left MVDR is monotonically non-increasing
J
(
wl,i+1

)
≤ J

(
wl,i

)
. In a similar way, we conclude that the

variance of the right MVDR is also monotonically non-increasing
J
(
wr,i+1

)
≤ J

(
wr,i

)
. J (w) is trivially lower bounded by 0 and

therefore J (wl,∞), J (wr,∞) must converge. Consider the above
inequalities for i→∞:

J
(
wl,∞

)
≤ J

(
(h̃lr,1)∗wr,∞

)
(11a)

J (wr,∞) ≤ J
(

(h̃rl,1)∗wl,∞
)
. (11b)

Dividing Eq. (11b) by |h̃rl,1|2, noting that h̃rl,1h̃
l
r,1 = 1 and combining

both inequalities we have that J
(

(h̃lr,1)∗wr,∞
)
≤ J

(
wl,∞) ≤

J
(

(h̃lr,1)∗wr,∞
)

and due to the Squeeze theorem an equality holds

J
(
wl,∞

)
= J

(
(h̃lr,1)∗wr,∞

)
. (12)

Since Ll(w∞l , α∞l , λ∞l ) is the only local minimum as shown in
Sec. IV, and since (h̃lr,1)∗wr,∞ belongs to the minimization range
they coincide wl,∞ = (h̃lr,1)∗wr,∞, and the spatial filters after con-
vergence are parallel. Notice that α∞l = (h̃lr,1)∗ and α∞r = (h̃rl,1)∗.

In order to prove that wol = wl,∞ we define the projection matrix
to the desired signal subspace P ‖ = hh†

h†h
and to its null subspace

P⊥ = I − hh†

h†h
, where I is the identity matrix. Notice that the left

and right constraints guarantee that at any iteration i > 1 the parallel
components remain constant P ‖wl,i = wl‖ = wol‖, P ‖wr,i =
wr‖ = wor‖. Substitute wl,i = (P ‖ + P⊥)wl,i = wl‖ + wl⊥,i in
the left Lagrangian (6)

Ll(wi
l, α

i
l , λ

i
l) = (wl‖ + wl⊥,i)†Φzz(w

l‖ + wl⊥,i)

+ λil

(
(wl‖)†h̃

l

l + (wr‖)†h̃
l

r − 1
)

+ (λil)
∗
(

(h̃
l

l)
†w

l‖
l + (h̃

l

r)
†wl‖

r − 1
)
. (13)

The partial derivative ∂Ll

∂wl⊥,i
l

equals:

∂Ll
∂wl⊥,i

l

=
(
P⊥ΦzzP

‖
)
ll
w
l‖
l +

(
P⊥ΦzzP

⊥
)
ll
wl⊥,i
l

+
(
P⊥ΦzzP

‖
)
lr
wl‖
r +

(
P⊥ΦzzP

⊥
)
ll
wl⊥,i
r . (14)

In a similar manner we reformulate Lr(wi
r, α

i
r, λ

i
r) and evaluate its

partial derivative ∂Lr

∂wr⊥,i
l

∂Lr
∂wr⊥,i

l

=
(
P⊥ΦzzP

‖
)
ll
w
r‖
l +

(
P⊥ΦzzP

⊥
)
ll
wr⊥,i
l

+
(
P⊥ΦzzP

‖
)
lr
wr‖
r +

(
P⊥ΦzzP

⊥
)
ll
wr⊥,i
r .

(15)

Hence, the partial derivatives with respect to the left part of the
orthogonal weights simultaneously equal zero ∂Lr

∂wr⊥,i
l

|wr,∞ =

α∞r
∂Ll

∂wl⊥,i
l

|wl,∞ = 0 when i → ∞. The right partial derivative
simultaneously equal zero in a similar manner. Finally the global
minimum is reached, since the parallel part of the weights equals its
optimum, and since all the partial derivatives according to the left and
right orthogonal parts of the weights equal zero. Furthermore, since
the global Lagrangian under minimization has a single minimum, it
has been reached. Hence, it is concluded that

wl,∞ = wol (16a)

wr,∞ = wor� (16b)

begin
for i = 1, 2, .. do

if i = 1 then

w1
l = (Φll)

−1h̃
l

l

(
(h̃
l

l)
†(Φll)

−1h̃
l

l

)−1

α1
l = 0
d1r = 0

else

λil =

(
−‖h̄l,il ‖2

(Φ̄
i

ll)
−1
− ‖( ˜h

l

r)
†wi−1

r ‖2

(wi−1
r )†Φrrwi−1

r

)−1

wi
l = λil(Φ̄

i
ll)
−1h̄

l,i
l

αil = − (wi−1
r )Φrlwi

l+λ
i
l(w

i−1
r )†

˜h
l

r

(wi−1
r )†Φrrwi−1

r

wi
l =

wi
l

(
˜h
l

l)
†wi

l

end
dil = (wi

l)
†zl

yil = (wi
l)
†zl + (αil)

∗di−1
r

Transmit dil to the right side

λir =

(
−‖h̄r,ir ‖2

(Φ̄
i

rr)
−1
− ‖( ˜h

r

l )
†wi

l‖
2

(wi
l
)†Φllwi

l

)−1

wi
r = λir(Φ̄

i
rr)
−1h̄

r,i
r

αir = − (wi
l)Φlrwi

r+λ
i
r(w

i
l)
† ˜h

r

l

(wi
l
)†Φllwi

l

wi
r =

wi
r

(
˜h
r

r)
†wi

r

dir = (wi
r)
†zr

yir = (wi
r)
†zr + (αir)

∗dil
Transmit dir to the left side

end
end

Algorithm 1: Distributed binaural MVDR

VI. EXPERIMENTAL STUDY

The proposed algorithm was evaluated using both narrow-band
stationary signals and speech signals in a reverberant room. The pro-
posed method was compared with the closed-form binaural MVDR,
and the closed-form monaural MVDR. The narrow-band scenario is
comprised of 1 desired source and 2 interfering sources received
by 2 sub-arrays each comprised of 2 sensors with random transfer



function (TF)s. The sources are generated directly at the STFT
domain as complex Gaussian random variables uncorrelated between
time frames. A spatially white sensor noise is added to the received
signals. The signal to interference ratio (SIR) and signal to noise
ratio (SNR) were set to 0dB and 20dB, respectively. The various
correlation matrices were assumed to be known. In Fig. 2(a) a
comparison between the noise variance of the proposed distributed
MVDR and the monaural MVDR normalized by the noise variance of
the binaural MVDR is shown for the left and right lateral. 50 Monte-
carlo trials were used to produce the graphs. The noise variance is
plotted vs. the iteration number. It is clear from the figure that the
proposed algorithm converges to the binaural MVDR.

The wide-band speech scenario is comprised of 1 desired speaker
and 2 interference signals received by 2 sub-arrays comprised of
2 microphones in a simulated 4 × 4 × 3m3 room environment,
with a reverberation time set to 150ms. The SIR and SNR were
set to 15dB and 60dB respectively. The 2 sub-arrays were oriented
in parallel. The inter sub-array distance was set to 17cm. The
distance between the 2 microphones at each sub-array was set to
5cm. The signals were sampled at 8KHz and were transformed
into the STFT domain with 2048 points and 75% overlap. The
various algorithms operated in each frequency bin independently.
The signals were filtered in the time-domain1. The noise and speech
correlation matrices were estimated in noise-only and in speech and
noise segments, respectively, using a simple energy threshold voice
activity detector (VAD). The desired signal RTF was estimated by
selecting the major eigenvector of the GEVD of the received signals
correlation matrix and the noise-only correlation matrix. The average
noise PSD at the outputs of the proposed distributed algorithm and
the monaural MVDR algorithms normalized by the noise PSD at
the output of the binaural MVDR is depicted in Fig. 2(b). The
graphs were obtained by averaging 20 Monte-Carlo experiments.
The number of iterations of the distributed MVDR algorithm was
set to 10. Due to estimation errors and filter windowing the noise
PSD of the proposed distributed MVDR is 1.5dB higher than the
noise PSD of the binaural MVDR. In Fig. 3 the distributed MVDR
is compared with the binaural and monaural MVDR by subjective
assessment of speech sonograms. It is clearly seen that the proposed
distributed binaural MVDR outperforms the monaural MVDR, and
that its performance is equivalent to the binaural MVDR.

VII. CONCLUSIONS

A novel distributed MVDR beamformer has been introduced. The
proposed method reduces the energy consumption by requiring a
single transmission channel between two sub-arrays, regardless of
the number of microphones. The algorithm is proved to converge
to the optimal binaural MVDR when the desired source correlation
matrix has a rank-1. The algorithm is applied to the binaural hearing
aid problem. The experimental study demonstrates the superior per-
formance of the proposed algorithm in comparison with the monaural
MVDR. The convergence to the binaural MVDR is analytically
proven for the narrow-band case. A time recursive version of the
algorithm can be obtained by using a recursive estimation of the
involved correlation matrices.
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