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ABSTRACT

In this paper, the problem of blind monaural speech/music source
separation is addressed using short-time spectral kurtosis (STSK).
An estimator for STSK is introduced, and a source separation algo-
rithm is formulated that relies on the spectral kurtosis differences
of distinct signal classes. The performance of the proposed algo-
rithm is evaluated on mixtures of speech signals and various types
of music signals. The results are compared to those obtained by a
competing monaural source separation algorithm, which is based
on a Gaussian mixture model (GMM).

1. INTRODUCTION

High order statistics are frequently used in the task of multichannel
source separation. In particular, kurtosis is used as a measure of
non-Gaussianity of the recovered mixture components. Spectral
kurtosis (SK) is a tool capable of locating non-Gaussian compo-
nents including their location in the frequency domain. SK was
first introduced by Dwyer [1]. He defined it as a kurtosis value of
the real part of the STFT filterbank output. Antoni [2] introduced
a different formalization of the SK by means of Wold-Cramér de-
composition which gave a theoretical ground for the estimation of
the SK of non-stationary processes. He also showed practical ap-
plications of his approach in the field of machine surveillance and
diagnostics [3, 4]. Other applications of spectral kurtosis include
SNR estimation in speech signals [5], denoising [6], and subter-
ranean termite detection [7].

In this paper we show how the SK of a mixture relates to the
SK of its components. We define the short time spectral kurtosis
(STSK) as a time localized version of the SK. We define a simple
STSK estimator and show its application in the task of speech and
music monaural separation. The proposed algorithm uses STSK
analysis to assign time-frequency bins of a mixture to the correct
source. A binary mask is used to reject the interfering source in
the STFT domain. In the experimental results we study the separa-
tion performance of the proposed algorithm on mixtures of speech
and musical excerpts played by various instruments. We show im-
proved performance of the proposed algorithm compared to a com-
peting GMM based algorithm [8].

The remainder of this paper is structured as follows. In Sec-
tion 2 we present the concept of SK. Section 3 extends the idea of
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SK to non-stationary signals. In Section 4 we describe a simple
source separation algorithm based on the SK analysis. An experi-
mental study is given in Section 5, followed by a short discussion
in Section 6.

2. SPECTRAL KURTOSIS

In this section, we present the SK. We analytically evaluate the SK
for some common probability distributions, and show how the SK
of an instantaneous mixture relates to the SK of its components.

Let x (n) be a real, discrete time, stationary random vector.
Let Xk be its N points discrete Fourier transform (DFT) defined
by:

Xk =

N−1∑
n=0

x (n) e−j 2π
N

kn, (1)

where k is the frequency index. Due the circularity of Xk and
following the reasoning in [9], the only way to define a spectral
kurtosis for x (n) that does not vanish is

Kx (k) =
κ4 {Xk, X

∗
k ,Xk, X

∗
k}

(κ2 {Xk, X∗
k})

2 , (2)

with κr being an r-th order cumulant. Using the circularity the
definition can be simplified to:

Kx (k) =
E
{
|Xk|4

}(
E
{
|Xk|2

})2 − 2. (3)

Let xWG (n) be a white Gaussian signal. Its DFT is a complex
normally distributed vector. All cumulants of an order greater than
3 are zero for Gaussian and complex Gaussian random variables.
By eq. (2) the SK of xWG (n) is zero for all k.

Let a be an amplitude and m0 a frequency index. Let xsine (n) =

aej(2π
m0
N

n+φ). If φ ∼ U (0, 2π), xsine (n) is a stationary pro-
cess. We note that E

{
|Xk|4

}
=

(
E
{
|Xk|2

})2
= (Na)4. It

follows that Kxsine (k) = −1.
In this work we use the instantaneous mixture model:

x (n) = s1 (n) + s2 (n) . (4)

Assume that s1 (n) and s2 (n) are statistically independent sta-
tionary processes. Let ϕs (k) , E

(
|Sk|2

)
and γ (k) , ϕs1 (k) /ϕs2 (k)



where Sk is the k-th coefficient of DFT of s. Since Sk are circular
processes, it can be shown that

Kx (k) =

∣∣∣∣ 1

1 + 1/γ (k)

∣∣∣∣2 Ks1 (k) +

∣∣∣∣ 1

1 + γ (k)

∣∣∣∣2 Ks2 (k) . (5)

When γ (k) ≫ 1, a mixture SK is approximately the SK of the first
component, i.e. Kx (k) ≈ Ks1 (k). Similarly, when γ (k) ≪ 1,
Kx (k) ≈ Ks2 (k).

2.1. Kurtosis Estimation

Let {X (i)}LK
i=1 ∈ RN denote a set of samples. In case {X (i)} are

i.i.d, Vrabie et al. [9] proposed the following unbiased estimator
of the SK:

K̂X =
LK

LK − 1

 (LK + 1)
∑LK

i=1 |X (i)|4(∑LK
i=1 |X (i)|2

)2 − 2

 . (6)

Antoni [2] proposed another SK estimator assuming Wold-
Cramér decomposition of non-stationary process. It is based on
the STFT transform and requires the analyzed signal to be quasi-
stationary at the scale of the STFT analysis windows. The estima-
tor is defined using 2n-th moment empirical estimator:

Ŝ2nX (k) ,
⟨
|Xk (m)|2n

⟩
m

, (7)

where Xk (m) is the STFT transform of x (n), m and k are the
time and frequency indices, respectively, and ⟨.⟩t is the averaging
operator with respect to t. The STFT based estimator of the SK is
defined as

K̂X (k) , Ŝ4X (k)

Ŝ2
2X (k)

− 2. (8)

The analysis of the statistical properties of this estimator can be
found in [2].

The SK estimator (8) has no time localization. In order for
the SK analysis be applicable to speech or music processing, we
propose to localize the SK estimation in time. We define a time
localized 2n-th order empirical spectral moment of |Xk (m)| as:

Ŝ2nX,k (m) ,
⌊LK/2⌋∑

i=−⌊LK/2⌋

wK (m+ i) |Xk (i)|2n , (9)

where wK (m) is an averaging window and
∑

m wK (m) = 1.
Definitions (7) and (9) are identical except for the time localization
in (9). Finally we define:

K̂X,k (m) , Ŝ4X,k (m)

Ŝ2
2X,k (m)

− 2. (10)

We note that this estimator is biased and its bias depends on the
overlap of the STFT analysis windows. In the rest of this paper we
refer to (10) as the short time spectrum kurtosis (STSK) estimator.
The set of samples used for the estimation of a single STSK value

is referred to as the STSK estimation window.
Loosely speaking, the relation between the STSK and SK is

similar to the relation between Fourier transform and the STFT.

2.2. Physical Interpretation

Following [2], (7) can be written as

K̂X (k) ,
⟨
|Xk (m)|4

⟩
m

−
⟨
|Xk (m)|2

⟩2
m⟨

|Xk (m)|2
⟩2
m

− 1. (11)

This expression can be interpreted as a normalized empirical vari-
ance of the signal energy in different frequency bands (up to a sub-
tracted constant −1) which is as a measure for the time dispersion
of |Xk|2 . Similar interpretation can be applied to the STSK.

3. SHORT TIME SPECTRAL KURTOSIS OF NATURAL
AUDIO SIGNALS

In this section, we demonstrate an STSK analysis of speech and
piano play signals.

In the following examples we use audio signals sampled at
16 KHz. The STFT analysis is performed using N = 1024, M =
128. We set LK = 31 and wK to be a rectangular window

wK (m) =

{
1/LK , −⌊LK/2⌋ ≤ m ≤ ⌊LK/2⌋ ,
0, otherwise,

(12)

i.e. a single STSK value is estimated from a bandpass signal within
a time span window of roughly 1/4 second.

Figure 1 shows the STFT and STSK of speech, piano play and
their mixture respectively. We observe that low values dominate
the STSK of the piano play signal and high values dominate the
speech STSK.

When the STSK estimation window contains a speech phoneme
onset or offset, plosive phoneme or a musical note onset or off-
set, the time dispersion of the energy is high (within that win-
dow), hence the STSK value is also high. The STSK values in
the time-frequency regions that contain fricative phonemes are ap-
proximately zero since they are well modeled by a complex Gaus-
sian noise.

An harmonic partial in the STFT domain is well modeled by a
complex sine. The STSK value will be close to −1 if the STSK es-
timation window contains an harmonic partial. In most cases, the
pitch rate of a natural speech changes constantly. If the STSK esti-
mation window is long enough, it is likely to accommodate the in-
clusion or exclusion of an harmonic partial in the STFT frequency
band. As a result, high values of the STSK will be estimated in
time-frequency regions where voiced phonemes are present.

The W-DO property in an approximate sense [10] implies that
it is unlikely that the large STFT coefficients coincide in the same
time-frequency bins. We assume that the W-DO property in an ap-
proximate sense holds for speech and music mixtures. The W-DO
property implies that γ (k) ≫ 1 or γ (k) ≪ 1 holds for almost
all time-frequency bins. Using (5) we conclude that each time-
frequency bin can be assigned to the correct source by testing its
STSK value. This allows us to formulate a source separation algo-
rithm as described next.
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Fig. 1: Power spectrum (upper row) and STSK analysis (lower row) of (a),(d) a speech signal; (b),(e) a piano play signal; (c),(f) a speech
and piano play mixture.

4. SOURCE SEPARATION USING STSK

In the previous section we observed that the STSK values of a
speech signal are generally higher than the STSK values of a piano
play. We also saw that pitch tracks of a piano play have low STSK
values. This motivates us to define the following binary masks in
the STFT domain:

M
(1)
k (m) =

{
1 K̂x,k (m) > δSK

0 otherwise
, (13)

M
(2)
k (m) = 1−M1,k (m) , (14)

where δSK is a threshold chosen manually.
We reconstruct the mixture components by masking the in-

terfering signal in the time-frequency domain followed by inverse
short time Fourier (ISTFT) transform

Ŝc,k (m) = M
(c)
k Xk (m) , (15)

ŝc (n) = ISTFT
(
Ŝc

)
. (16)

5. EXPERIMENTAL RESULTS

In this section we describe computer simulation and informal lis-
tening test results. We compare the performance of the proposed
algorithm to a GMM monaural separation algorithm [8].

The GMM algorithm requires training sequences. We use the
first minute of the test sequence file for training. The performances
of both algorithms are evaluated on the second minute of the same
mixture. Speech excerpts are taken from the TIMIT database are
sampled at 16 KHz. Musical excerpts are taken from free Internet
sources and downsampled to 16 KHz. We used a GMM model of
order 26.

Table 1: Algorithm Parameters.

Sampling frequency 16KHz
STFT analysis window length 1024

STFT overlap (samples) 128
Short time SK estimation window

length (samples/secs)
71 (∼0.5

sec)
δSK 1

An instantaneous mixture of signals was obtained by adding
two signals in the computer program. No noise was added to the
mixture. The signal-to-distortion ratio (SDR), signal-to-interference
ratio (SIR) and signal-to-artifact ratio (SAR) measures [11] were
used for the performance evaluation. The energies of the speech
and piano signals were normalized prior to mixing, hence the SDR
and SIR of the mixture are approximately zero and the SAR is very
high.

The parameters of the proposed algorithm are shown in Ta-
ble 1. The value of δSK was chosen experimentally in a way that
makes the SDR of both extracted sources approximately equal.

Table 2 compares the performance of the proposed algorithm
evaluated on speech signal mixed with different musical excerpts.
The same table displays the performance of the GMM based sep-
aration algorithm. In all cases the STSK based algorithm outper-
forms the GMM based algorithm.

The objective measures show different quality of separation
for different types of musical excerpts. Wind quartet is separated
best, followed by piano solo, guitar solo, and orchestra sequences.

Listening to the extracted speech and music components re-
veals that the GMM algorithm produces a “jumpy” signal. This
is the result of GMM state switching between consequent frames.
The STSK based algorithm results in a more fluent and natural
sound. Higher amount of residua and distortion is audible in the



Table 2: Comparison of the STSK-Based and the GMM-Based
Separation Algorithms.
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SDR1 8.9 2.2 6.4 2.4 5.7 −5.6 4.7 −5.2

SIR1 29.4 6.3 17.2 8.3 15.5 20.5 13.3 19.4

SAR1 8.9 5.3 6.9 4.4 6.4 −5.5 5.5 −5.2

SDR2 9 1.6 6.6 2.6 5.7 0.9 4.7 0.9

SIR2 17.8 8.8 16.9 7.6 15.5 1.6 13.8 1.8

SAR2 9.7 3.1 7.2 4.9 6.3 11.2 5.4 10.3

signals extracted by the GMM algorithm.
The music residua found in the speech component extracted

by the STSK based algorithm has non-harmonic nature, such as
onsets of piano notes (caused by a felt covered hammer striking the
strings), pluck sound in the guitar play and percussive instruments
in the orchestra sequence. Speech residua in the extracted musical
component contains traces of speech voiced phonemes.

All audio excerpts and the separation results used in this paper
can be downloaded from http://sipl.technion.ac.il/
~elitvin/SK.

6. DISCUSSION

The proposed algorithm fails to distinguish between non-harmonic
components in music and speech since they both have relatively
high values of the STSK, thus musical sources that contain less
non-harmonic components (e.g. wind quartet) are separated to a
greater extent than those with higher amounts of non-harmonic
components (e.g. percussive instruments in the orchestra).

The fact that the proposed algorithm operates in time-frequency
localized regions allows it to perform decently well in the case
when the learning of the spectral shapes of a signal fails (e.g. or-
chestra, guitar solo). Perhaps, the combination of localized time-
frequency and spectral information could further improve the sep-
aration performance.

7. CONCLUSIONS

Recent work on the spectral kurtosis mainly focused on machine
surveillance and diagnostics. The value of the SK was estimated
using large sets of independent samples. In our work we estimate
time-localized SK values. We have defined a short time spectral
kurtosis (STSK) and its ad-hoc estimator. The STSK should be
seen as a frequency localized temporal feature. Each STSK value
is estimated in a narrow band signal, hence the STSK carries in-
formation that is orthogonal to the spectral information.

We demonstrated the application of the STSK to monaural
speech/music separation. In our experimental study we found that
an algorithm that uses the STSK feature showed surprisingly good
performance in separating instantaneous mixtures of speech and
various musical excerpts. A convolutive mix scenario does not
pose a problem for the proposed algorithm as long as the STSK

values of two signals convolved with a respective channel remain
significantly different.

The STSK can also serve as an additional feature in various au-
dio processing tasks, such as signal enhancement and signal clas-
sification. A further study of the statistical properties of the STSK
estimator is a subject for future research.
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