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ABSTRACT

In this paper, a new nonlinear model for improved acoustioean-
cellation in the short-time Fourier transform domain igaadiuced.
The model consists of a parallel combination of linear arabgatic
components. The linear component is represented by nicétple
terms, while the quadratic component is modeled by mutipive
cross-terms. We show that for low signal-to-noise ratio (SNR) con-
ditions, a lower mean-square error is achieved by allowgrgibn-
linear undermodeling and employing only the linear muicigtive
transfer function (MTF) model. However, as the SNR increase
the performance can be generally improved by the proposed no
linear model. A significant reduction in computational castwell
as an improvement in estimation accuracy is achieved oedirtte-
domain Volterra approach. Experimental results demotestne ad-
vantage of the proposed model for nonlinear acoustic echecetia-
tion.

Index Terms— Nonlinear acoustic echo cancellation, multi-
plicative transfer function, short-time Fourier transfiprnonlinear
undermodeling.

1. INTRODUCTION
Loudspeaker-enclosure-microphone (LEM) system modetfirtge
short-time Fourier transform (STFT) domain is of major imtpace
in many acoustic echo cancellation applications, esggcighen
long echo paths are considered [1]. The multiplicativedfanfunc-
tion (MTF) approximation [2], which relies on the assumptiaf a
large analysis window length, is widely-used in such apians
due to computational efficiency (e.g., [3, 4]). However, iam
cases, particularly when small loudspeakers are drivemgatvol-
umes, the LEM system often exhibits certain nonlineartties can-
not be sufficiently estimated by the linear MTF model. Votefil-
ters used for modeling the nonlinear LEM system [5, 6] ofteffies
from extremely high computational cost due to a large nurobpa-
rameters. This problem becomes even more crucial whenastign
systems with relatively large memory length, which is oftlea case
in acoustic echo cancellation applications.
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Fig. 1. Acoustic echo cancellation in the STFT domain.

on a time-frequency representation of a homogeneous sexded
Volterra filter. We consider an off-line echo cancellatiatheme
based on a least-squares (LS) criterion, and analyze tfaénabte
mean-square error (mse) in each frequency bin. We mainly con
centrate on the error arises duenlinear undermodeling; that is,
when the linear MTF model is utilized for estimating the rionl
ear LEM system. We show that for low signal-to-noise ratibliRy
conditions, a lower mse is achieved by using the MTF model and
allowing for nonlinear undermodeling. However, as the SWR i
creases, the acoustic echo canceller (AEC) performancbecgan-
erally improved by employing the proposed nonlinear modéhen
compared to the conventional time-domain \olterra apgrpacig-
nificant reduction in computational complexity is achieugdthe
proposed approach, especially when long-memory systesrmsoar
sidered. Experimental results demonstrate the advanfabe pro-
posed approach for nonlinear acoustic echo cancellation.

The paper is organized as follows. In Section 2, we introduce
a new nonlinear STFT model that is based on the MTF approxima-
tion. In Section 3, we present an off-line echo cancellaticneme
for estimating the model parameters. In Section 4, we deaive
pressions for the obtainable mse, and investigate the imfeuef

In this paper, we extend the MTF approximation and introducenonlinear undermodeling on the AEC performance. Finathyséc-

a new nonlinear model for improved acoustic echo cancefiaiti
the STFT domain. The proposed model consists of a paraliet co
bination of linear and quadratic components. The linear pmm
nent is represented by the MTF approximation, while the catad
component is modeled by multiplicative cross-terms. Thadgatic-
component model has been recently introduced in [7], andsedb
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tion 5, we present experimental results which support teerttical
derivations.

2. MODELING THE LEM SYSTEM

A typical acoustic echo cancellation scheme in the STFT dioma
is illustrated in Fig. 1. The far-end signaln) is emitted by a
loudspeaker, then propagates through the enclosure aeidedan



the microphone as an echo sigr#h). Together with a near-end
speech signal and local noise [collectively denoted ()], the mi-
crophone signal can be written aén) = d(n) + £(n). Applying
the STFT toy(n), we have in the time-frequency domain

@

wherep is the frame index and& represents the frequency-bin in-
dex 0 < kK < N —1). To produce an echo estimafg,k in the
time-frequency domain, a proper STFT model for the LEM syste
is needed. The widely-used MTF approximation [2] assumed-a r
atively large analysis-window length to approximate thstesn as
multiplicative in the STFT domain, i.e.,

Yp.k = dp,k + Ep .k

dp,k = hi Tp s -

@)

The effectiveness of the MTF approximation in estimatinggdr

terms in each frequency bin i§/2 + 1. Then, let
]T

4)
denote the quadratic cross-terms at e frequency bin, and let
Ap = [ Xox Xn+k N+l | be
anP x (N/2 + 1) matrix, wherex;, » = x; © x;/, and® denotes

a term-by-term multiplication. Then, the AEC output sig(@)l can
be written in a vector form as
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dy (0k) = xhi + yArck 2 R0y, %)
whereR.; =[x, yAx], anddy = [hs cf]T is the model parame-
ters vector. The subscriptin &7;@ (6x) indicates the dependence of
the echo estimate on the model structure, which can be dittezr
or nonlinear. Finally, using the above notations, the L8reste of

systems has been demonstrated in [3]. However, in many tcous the model parameters at theh frequency bin is given by

echo cancellation applications, particularly when snmaltispeakers
are driven at high volumes, the LEM system often exhibitsader
nonlinearities that cannot be sufficiently estimated by abeven-

tional MTF model.

O,k = argmin [lyy — R..0:[” = R,y
k

(6)

whereR!, = (RY,R,x) 'R} is the Moore-Penrose pseudo in-

For improved nonlinear echo cancellation, we may extend thaerse matrix ofR. .. Substituting (6) into (5), we obtain the best

MTF approximation by incorporating a nonlinear componeno i

estimate of the echo signal in the STFT domdin,(6.,x ) in the LS

the model. To do so, we employ the nonlinear model defined]in [7 sense, for a given value.

which is based on the time-frequency representation of lgemo
neous \olterra filters. Since the nonlinearity of loudsmeakcan

be assumed to be limited up to the second order [5], we canside

here only the quadratic case. Accordingly, the output ofphe
posed nonlinear AEC is given as a parallel combination afdin
and quadratic components in the time-frequency domain|ksvi

dp,ks =hk Tp,k
+7 E Tp 1/ T, (k—k') mod NCk/ ,(k—k') mod N (3)
KeF

wherey € {0,1}, cu (k—i')moa nv IS referred to as auadratic
cross-term, and F {0,1,... |k/2],k + 1,...,k + 1 +

4. MSE ANALYSIS

In this section, we derive expressions for the mse obtagnibthe
kth frequency hin, and investigate the influence of nonlingater-
modeling (controlled byy) on the AEC performance. For a tractable
analysis, we assume thaj , and¢, . are zero-mean white Gaus-
sian signals with variances: ando—g, respectively, and that they are
statistically independent.

4.1. Relations Between MSE and SNR

(N — &k —2)/2]}. The conventional MTF approximation is used The (normalized) mse is defined by

in (3) for representing the linear component of the systenie T
cross-terms{ck,,(k,k,)modN] k' € F}, on the other hand, are
used for modeling the quadratic component of the systengusin
sum over all possible interactions between pairs of inmgudencies
xp k andz, ., such that only frequency indicg%’, "}, whose
sum isk or k + N, contribute to the output at frequency inNote
that~y controls the nonlinear undermodeling as it determines kéret
a linear or a nonlinear model is considered. By setting: 0, the
nonlinearity is ignored and the linear MTF model is fittedhe tata,
which may degrade the system estimate accuracy. The infiuginc

the parametety on the mean-square performance is investigated in

Section 4.

3. OFF-LINE CANCELLATION SCHEME

In this section, we introduce an LS-based off-line algeonifior echo
cancellation using the proposed nonlinear STFT model. Wetde
by P the number of samples in a time-trajectoryagfy. Letx;, =
[ zor @1k TP_1,k ]T denote a time-trajectory of
at frequency bink, and let the vectorsl,, &, andy; be defined
similarly. For notational simplicity, let us assume tlaand N are
both even, such that according to (3), the number of quadcediss-

vk = mE{Hdk - awk(évk)’r} )

where E{-} denotes expectation. Recall thai denotes the mse
obtained by using only the linear MTF model, ang. is the mse
achieved by incorporating also a quadratic component igartodel
[see (3)]. Substituting (5) and (6) into (7), the mse can l@essed

as
€1 — €2

1+ ———
E{|dx)?}
wheree; = E{¢{'RxR] &} ande; = E{d[/R,R], d}}. Us-

ing the whiteness assumption &y . and the property that’’b =
tr(ab™)* for any two vectora andb, ¢; can be expressed as

8)

€Evk =

€1

tr (B{&l} BRRLY)

—1\ *
agE{tr (RERRW (Rfkak) ) }

of 1+ (N/2+1)].

9)

For evaluating:, let us assume that, ; is ergodic and that the data
length P is sufficiently large. From (5), the inverse BfﬁﬂcRyk can



be expressed as approach.
H -1 o XkI.{Xk ’kaHAk -
(RIARw) = { JArxH AT AL (10) 5. EXPERIMENTAL RESULTS

where from the ergodicity, théth term of Af/x;, may be approx-  In this section, we present experimental results that dstrate the
imated _as(Ak’.{xk)l ~ PE{z},,, x:‘n’(k,[k)_mod N;:mﬁk} where  effectiveness of the proposed approach. In the first experinwe
Ly, = Lif £ < k/2,andl,, = ¢ + k/2 otherwise. Since odd-order examine the proposed AEC performance for white Gaussiaalsig
moments of a zero-mean complex Gaussian process are zewe[8] and demonstrate the influence of nonlinear undermodelirfgting
get (Akak)[ ~ 0, and (10) reduces to both linear and nonlinear models to the data. The input sig6a)
and the additive noise signg{n) are uncorrelated zero-mean white
RYR = (kaXk)* 01xN/241 11) Gaussian processes. The LEM systgm is assumed Fo be raprksen
vk vk ~ AHANT! by a second-order Volterra filter, which relates the inp(t) and
On/2+1x1 ’Y( k k) .
outputy(n) as follows:

whereOy 1 is a zero vector of siz& x 1. Substituting (11) into

. . Ni—1
the expression for2, we obtain y(n) = ha (m)a(n — m) (15)
€2 = €12 + Y€22 (12) m=o
No—1Nop—1
wheree» = E{df x;x]d;} andes2 = E{d Ay Ald,}. Finally, + > Y ha(m,Ox(n — m)z(n — ) + £(n)
denoting the SNR by, = o3 /02, whereo] = E{|d,x|*}, and m=0 =0

substituting (3) and (12) into (8), we obtain whereh:(m) andhz(m, £) are the linear and quadratic Volterra ker-

_ Ok 13 nels, respectively, anf{’; and N> are their corresponding memory
vk = n + B (13) lengths. The quadratic kernel is modeled as a unit variaece- z
mean white Gaussian process, whereas the linear kernelds mo
wherea,, = 1/P +~[N/2+1]/P andB,x = 1 —e12/(Poi) —  eled as a stochastic process with an exponential decayopeyéle. ,
veaz/(Po3). We observe from (13) that the msg,, for fixed val- h(n) = u(n)B(n)e %" [whereu(n) is the unit step function
ues ofy andk, is a monotonically decreasing function ®f Note  andj3(n) is a unit-variance zero-mean white Gaussian process]. The
thatez2 can be rewritten as memory lengths are set y; = 50 and No = 40. To maintain
" H ; the large analysis-window support assumption, a Hammiadyais
€ =FE {dk (AkAy) AkAkdk} window of lengthN = 8N, with 50% overlap is employed. The
5 AEC performance is evaluated by the time-domain mse, defiged
:E{HAkALdkH }zo. (14) ) .
= s E{ i - b @} a9
Then, following the nonnegativity of22, it can be verified that E{|d(n)| }

aqk > aor and < , which implies that;;, > eos for low . . .
SNR 0 b 1),ﬂallﬁd;kﬁoé€ eoy, for higFi)1 SNR @1§> 1)(?kAccord- whered(n) is the clean output signal [i.ed(n) = y(n) — £(n)]
ingly, for low SNR conditions, a lower mse is achieved bywaitg ~ @1dd-(n) is the inverse STFT of the AEC output signgl .. [see
for nonlinear undermodeling and employing the convenfiinaar (31, s obtained for a given value. Figure 2 shows the result-
MTF model in the estimation process. On the other hand, as th&d MSe curves, ande; as a function of the SNR, as obtained for

SNR increases, the mse performance can be generally imphyve Nonlinear-to-linear ratios (NLRs) dfo dB and—10 dB. The NLR
incorporating also the nonlinear component into the AEC( 1). repre_sents the power ratio between the output signals q[méra_tlc
These points will be further demonstrated in Section 5. and linear components of the true system. The results cotfiain

for relatively low SNR values, a lower mse is achieved by gshre
linear MTF model { = 0) and allowing for nonlinear undermodel-
ing. Forinstance, Fig. 2(a) shows that fora0 dB SNR, employing
Forming the normal equatior(ﬁ«/HkR’yk)é'yk = Rfkyk in (6), only a linear model reduces the mse by approximatélgB, com-
solving them using the Cholesky decomposition and calmgahe  pared to that achieved by the nonlinear mode( 1). However, for
desired signal estimate (5) for each frequency bin, reqNif1 + high SNR values, the proposed model is considerably moraraay
v(N/2+1)]? arithmetic operations, wher@is assumed sufficiently ~geous, as it enables a substantial decreagé dB in the mse for an
large, and the computations required for the forward andrsew  SNR 0f20 dB. A comparison of Figs. 2(a) and (b) indicates that as
STFTs and neglected. The computational cost of the propaged the NLR decreases, the two curves intersect at a higher NLR.va
proach is thereforéN/2 -+ 1)? times larger than that of the conven- This implies that when the nonlinearity of the LEM systemdraes
tional MTF approach~ = 0). It should be noted here that a time- weaker (i.e., the NLR decreases), higher SNR values sheutdir-
domain off-line estimation process with a second-ordetevich fil-  sidered to justify the estimation of the nonlinear companéfore-

ter requiresPL [N; + N2 (N2 + 1) /2]° arithmetic operations [7], ~over, one can observe that the relative improvement adthieyehe
whereN; and N> are the memory length of the linear and quadraticproposed model at high SNR values becomes larger when gicrea
Volterra kernels, respectively, addis the translation factor of the ing the NLR. Specifically for an SNR &0 dB, the proposed model
STFT. For typical values oV = 256, L = 128 (i.e., 50% over- improves the mse of the linear MTF model by dB for a—10 dB

lap between consecutive windowsy; = 1024 and N> = 60, the  NLR[Fig. 2(b)]; whereas a larger improvementifdB is achieved
complexity of the proposed approach is reduced by appraeija for a10 dB NLR [Fig. 2(a)].

250, when compared to the complexity of the time-domainevoét In the second experiment, we demonstrate the proposed ap-

4.2. Computational Complexity
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Fig. 2. MSE curves as a function of the SNR for white Gaussiannal. (c)—(e) Error signals obtained by a time-domain Vo#tenodel,

signals, as obtained by the MTF approae#) @nd the proposed ap-
proach €;). (a) Nonlinear-to-linear ratio (NLR) of0 dB (b) NLR
of —10 dB.

proach in a real acoustic echo cancellation scenario ugegch
signals. We use an ordinary office with a reverberation titneof
about 100 ms. The far-end speech signal is fed into a louispea
high volume (thus introducing non-negligible nonlineastdition),
and received in a microphone, which is locat&ctm away from the
loudspeaker. The effective length of the echo path0i@ ms, and
the signals are sampled B kHz. In this experiment, we compare
the performance of the subband models (both linear and neani)
to that of the fullband (second-order) Volterra model, vetire pa-
rameters of the latter are also estimated off-line. Theqgoerénce
is evaluated in the absence of near-end speech, since ircaseha
double-talk detector (DTD) is often employed to freeze thinea-
tion process. We use an analysis window lengtiiot= 1024 for
the linear MTF model in order to validate the large windowsunp

assumption. For the proposed model, on the other hand, desmal
256 is employed in order to maintain a reason-

length of N =
able computational complexity (see Section 4.2). In addijtifor
the Volterra model, the memory lengths of the linear and cataxd

kernels are set t668 and60, respectively. Figures 3(a)—(b) show the

far-end signal and the microphone signal, respectivetyureis 3(c)—
(e) show the residual echo signdin) [= y(n) — d(n)] obtained

by the time-domain Volterra model, the MTF model and the pro-

posed model, respectively. The values of the resulting eehon
loss enhancement (ERLE), definedBéy?(n)}/E{e?(n)}, were
also computed, and are given b¥.1 dB (Volterra),12.6 dB (MTF),

and20.5 dB (proposed). Clearly, the linear MTF model does not pro-

vide a sufficient echo attenuation, mainly due to the sigaificon-

linearity of the echo path. The proposed model, on the othadh
achieves an improvement Bf4 dB in the ERLE with a lower com-
putational complexity, compared to using the time-domaiterra

model.

6. CONCLUSIONS

Based on the MTF approximation, we have introduced a new non[-s]

linear model for improved acoustic echo cancellation in $7¢&=T

linear MTF model, and the proposed nonlinear model, resmbgt

domain. The proposed model achieves a significant impromeme

in mse performance over the linear MTF model. Compared to the

\olterra approach, the proposed approach provides besttienation
accuracy, with a substantially lower computational costtuFe re-
search will concentrate on constructing an adaptive AECXpjod-
ing the attractive properties of the proposed model.
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