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Abstract—In this paper, we introduce a voice activity detection
(VAD) algorithm based on spectral clustering and diffusion
kernels. The proposed algorithm is a supervised learning al-
gorithm comprising of learning and testing stages: A sample
cloud is produced for every signal frame by utilizing a moving
window. Mel-frequency cepstrum coefficients (MFCCs) are then
calculated for every sample in the cloud in order to produce an
MFCC matrix and subsequently a covariance matrix for every
frame. Utilizing the covariance matrix, we calculate a similarity
matrix using spectral clustering and diffusion kernels methods.
Using the similarity matrix, we cluster the data and transform
it to a new space where each point is labeled as speech or non-
speech. We then use a Gaussian Mixture Model (GMM) in order
to build a statistical model for labeling data as speech or non-
speech. Simulation results demonstrate its advantages compared
to a recent VAD algorithm.

I. INTRODUCTION

Voice activity detection (VAD) is an important component
in echo cancellation [1], speech recognition[2] and telephony
[3] applications. Common VAD implementations include the
G.729 [4] and Global System for Mobile Communications
(GSM) [5] standards. GSM includes two VAD operations:
First, computation of the Signal-to-Noise Ratio (SNR) in
nine bands and applying a threshold to these values. Second,
calculation of various parameters such as noise and channel
power and voice metrics. The algorithm then thresholds the
voice metrics using a varying threshold which varies according
to the estimated SNR. These standards demonstrate a fair
performance and therefore are widely used in communication
applications. Nevertheless, their performances degrade in the
presence of environmental noise, even for relatively high
SNR values. To overcome this shortcoming, several statistical
model based VAD algorithms have been proposed in the
last two decades. Sohn et al. [6] assumed that the spectral
coefficients of the noise and speech signal can be modeled
as complex Gaussian random variables, and proposed a VAD
algorithm based on the likelihood ratio test (LRT). Although
much progress has been made [7], [8], [9], [10], [11] in
improving VAD algorithms performance in the presence of
environmental noise, overcoming transient noise still remains
a big obstacle. Transient noises such as keyboard strokes and
door knocks are characterized as fast varying signals and often
labeled as speech. Furthermore, using a supervised learning
algorithm implies using a database for learning proposes.
Large databases require substantial storage space and increase
the computational complexity [12].

In this paper, we propose a voice activity detection algo-

rithm using both spectral clustering [13] and diffusion kernel
[14] methods. First, a sample cloud is created: Once a frame
is sampled, we utilize a moving window in order to calculate
MFCCs for a small part of the frame. The algorithm generates
an MFCC matrix for the entire frame in this fashion. We
then calculate a covariance matrix for the MFCCs in order
to determine the correlation between samples in the sample
cloud. Using the above, we calculate a similarity matrix
between frames and cluster the input signal into two classes,
speech or non-speech. The online testing stage receives a new
input signal, it utilizes both the output information of the
offline training stage and a new similarity matrix calculated
in the same fashion as the above in order to cluster the data
as speech and non-speech.

The rest of this paper is organized as follows. In Section
2 we formulate the problem. Section 3 presents simulation
results of the proposed VAD algorithm. Finally, Section 4
concludes the paper.

II. PROBLEM FORMULATION

In this section, we elaborate the discussion on the theory
of the proposed algorithm. The proposed VAD system utilizes
spectral clustering [13] and diffusion kernel [14] methods in
order to find a novel way of calculating a similarity matrix.

Let xsp(n) denote a speech signal and let xtr(n) and
xst(n) denote additive interfering transient and stationary
noise signals, respectively. The microphone input signal is
given by

y(n) = xsp(n) + xtr(n) + xst(n). (1)

The proposed VAD algorithm generates a cloud of samples
for each short frame (approximately 20 ms long) of the input
signal, calculates MFCCs for each sample in order to from
an MFCC matrix. Then, the algorithm calculates a covariance
matrix for each frame. The covariance matrix adds additional
factor of similarity between frames, which is utilized for the
calculation of a similarity matrix.

A. Sample Cloud

Given an audio input signal, the algorithm divides it into N
frames, approximately 20 ms long. A moving window of size
M is then utilized in order to generate i new samples of the
frame. Every sample of the frame is regarded as an iteration
of the generation process for the sample cloud given by

ŷj(n− k) = y(n)·wM (n− k −M · (j − 1) +
i

2
), k = 1, ..., i

(2)



where ŷj(n − k) is the generated sample cloud of the j-th
frame (out of N ), y(n) is the original signal, wM is the
moving window of size M , i is the desired number of samples
per frame and k is the current iteration index. For every
iteration k of the sample cloud, the algorithm calculates m
MFCCs. MFCCs are coefficients that form a representation of
the short-term power spectrum of a sound. MFCC is based
on a linear cosine transformation of a log power spectrum on
a non-linear Mel scale frequency, thus convenient for human
auditory applications. An m × i matrix of MFCCs is created
in this fashion for each frame of the N frames. Finally, for
each of the MFCC matrices the algorithm calculates a m×m
covariance matrix.

Let Xj
m be the m× i matrix of MFCCs of the j-th frame.

The covariance matrix for the j-th frame is given by

Σ = E
((
Xj
m − E

(
Xj
m

)) (
Xj
m − E

(
Xj
m

))T)
(3)

Where E denotes the expected value of a matrix. With the
covariance matrix Σ, we find the correlation between samples
in the sample cloud.

B. Similarity Matrix

The most important part of the proposed VAD algorithm
is the similarity matrix. The similarity matirx is utilized in
order to effectively cluster the data and label it as speech
or non-speech. Given an audio input signal composed of a
combination of speech, stationary noise and transient noise
components (i.e., xsp(n), xst(n) and xtr(n), respectively), we
choose absolute value of MFCCs and the arithmetic mean of
the log-likelihood ratios for the individual frequency bins as
the feature space, as in [13].

Let Ym(t, k) (t = 1, ..., N ; k = 1, ...,Km) and Ys(t, k)
(t = 1, ..., N ; k = 1, ...,Ks) be the absolute value of the
MFCC and the STFT coefficients in a given time frame,
respectively. Both MFCC and STFT coefficients are computed
in Km and Ks frequency bins, respectively. Then, each frame
is represented by a column vector of dimension (Km + 1)
defined as follows

Y (:, t) =

[
Ym(:, t)

Λt

]
(4)

where Ym(:, t) denotes the absolute value of MFCCs in a
specific time frame t. Λt denotes the arithmetic mean of the
log-likelihood ratios for frame t. The expression combines
various statistical calculations on the noise in the training stage
as well as STFT coefficients of the input audio signal. Λt is
given by

Λt =
1

Ks

Ks∑
k=1

(
γk (t) ξk (t)

1 + ξk (t)
− log (1 + ξk (t))

)
(5)

where ξk(t) = λs(t, k)/λN (t, k) and γk(t) =
|Ys(t, k)|2/λN (t, k) denote the a-priori and a-posteriori
SNR [15], respectively. λs(t, k) denotes the variance of
speech signal in the k-th frequency bin of the t-th frame and

λN (t, k) denotes the variance of stationary noise in t-th time
frame and k-th frequency bin.

Combining (3)-(5), we can now define the expression for
the similarity matrix

W `
θ (i, j) = exp

 P∑
p=−P

−αpQ(i+ p, j + p)

 (6)

Q (i, j) =[
Y `
m(:, i)

(
1− exp

(
−Λ`i /ε

))
− Y `

m(:, j)
(
1− exp

(
−Λ`j/ε

))]
·
(
Σ`
i + Σ`

j

)†
·
[
Y `
m(:, i)

(
1− exp

(
−Λ`i /ε

))
− Y `

m(:, j)
(
1− exp

(
−Λ`j/ε

))]T
(7)

where θ = [ε, α−P , α−P+1, · · · , αP−1, αP ] ∈ R2P+2 is a
vector of system parameters, Y `

m(:, i), Λ`i and Σ`
i are the

absolute value of the MFCC, the arithmetic mean of the log-
likelihood ratio and the covariance matrix of the i-th frame in
the `-th sequence, respectively, ε is the kernel width obtained
during the training stage and † denotes the pseudo-inverse of
a matrix. The main motivation behind the proposed similarity
matrix calculation in (7) is finding a model for the signal
generating system, i.e. the speech system of the speaker.
With the new representation, we gain a smaller degree of
freedom for the system model. We tag the system as a ”black
box” and try to find a model for the system by viewing its’
outputs. In fact, a second order approximation is applied on the
parameters in order to receive random Gaussian perturbations.
A covariance matrix is then calculated and used in order to
express a Jacobian matrix. Finally, the Jacobian is used in
order to find a similarity matrix. In order to calculate the
pseudo-inverse of the expression Σ`

i + Σ`
j in (7), we use

the first three largest eigenvectors received in singular vector
decomposition (SVD).

Let Σ be a covarince matrix as in (3), applying SVD yields

Σ† = V S†∆T (8)

Where ∆ is an orthogonal matrix of size 3×N , the columns
of ∆ are the eigenvectors of ΣΣT . S is a diagonal matrix
at the same size of Σ, its’ values are the square roots of
the non-zero eigenvalues of both ΣΣT and ΣTΣ. V is an
orthogonal matrix, the same size of ∆. The columns of V are
the eigenvectors of ΣTΣ.

C. Training Stage

The training algorithm in our paper is based on [13]. Given
databases of clean speech, transient noise and stationary noise
signals, We choose L different signals from each database.
Without loss of generality, we take the `-th speech signal,
transient noise and stationary noise and combine them as in
Fig. 1. We assume that all of these signal are of the same length
of N`. With the new database and by utilizing (4) and (5), we
extract the feature matrix Y `

1 , Y `
2 , Y `

3 . By concatenating the
feature matrix, we build the `-th training sequence, Y `, as



Fig. 1: A block scheme of the proposed (a) training, and (b) testing stages.

shown in Fig. 1. For each frame t, in the training sequence
` we compute an indicator matrix C`

t in order to indicate a
speech containing frame. For further discussion, see [13].

Next, we define a kernel which preserves the similarity
between points, as the similarity matrix in (6) and (7). This
metric guarantees small similarity between two frames of
different classes, i.e., speech and transient noise, even if they
are very similar to each other (in the Euclidean sense). This
is enabled due the large distance between neighboring frames.
Upon defining the parametric weight function, the parameters
can be obtained by solving the following optimization problem
[16]:

θopt = arg min
θ

1

L

L∑
`=1

F (W `
θ ,C

`) (9)

F (W ,C) =
1

2

∥∥∥ΥΥT −D1/2C(CTDC)−1CTD1/2
∥∥∥2
F

(10)

where Υ is an approximate orthonormal basis of the projec-
tions on the second principal subspace of D−1/2WD−1/2.

Let W `
θopt be the similarity matrix of the `-th training

sequence and U` be a matrix consisting of the two eigen-
vectors of D`−1/2W `D`−1/2 corresponding to the first two
largest eigenvalues, where D is a diagonal matrix whose i-
th diagonal element equals to

∑N
j=1W (i, j). We then define

U as the column concatenation of U1 through UL. U is a
new representation of the training data such that each row
of U corresponding to a specific training frame. For further
information, see [13].

We use Gaussian mixture modeling to model each cluster,
i.e., label as speech presence or absence, with a different
Gaussian Mixture Model (GMM). This means that we model
the low dimensional representation of the original data using
two different GMMs, one for each cluster. Let f (·;H0) and
f (·;H1) be the probability density function corresponding
to speech absence and presence frames, respectively. The
likelihood ratio for each labeled frame t is then obtained by

Γtrain
t =

f (U(t, :);H1)

f (U(t, :);H0)
(11)

where U(t, :) is the t-th row of the matrix U , and H1 and H0

are the speech presence and absence hypotheses, respectively.

D. Testing Stage

The main goal of the testing stage is to to cluster the
unlabeled data and decide whether a given unlabled frame
contains speech or not. In order to compute the likelihood
ratio for a new unlabled frame, [13] utilizes GMM to model
the eigenvectors of normalized Laplacian matrix.

Γtest
t =

f (Ũ(t, :);H1)

f (Ũ(t, :);H0)
(12)

where Ũ(t, :) is the t-th row of the new representation of
the unlabeled data in terms of eigenvectors of the normalized
Laplacian of the similarity matrix. In [11] it was shown that
using the information supplied by neighboring frames can im-
prove the performance of VAD algorithms. The improvement
is enabled due to the fact that frames containing speech signal
are usually followed by a frame that contains speech signal as
well. In the contrary, transient signals usually last for a single
time frame. Using this fact, the decision rule for an unlabeled
time frame is obtained by:

VAt =

J∑
j=−J

Γt+j

H1

≷
H0

Th t = 1, 2, · · · , T (13)

where Th is a threshold which controls the tradeoff between
probability of detection and false alarm. Increasing (decreas-
ing) this parameter leads to a decrease (increase) of both the
probability of false alarm and the probability of detection. Both
the training and testing stages are summarized in Table I. The
block schemes of both learning and testing stage are depicted
in figure 1.

III. SIMULATIONS RESULTS

In this section we demonstrate the performance and advan-
tages of the proposed VAD algorithm via several simulations.
We compare the results acquired to the results of the VAD
algorithm proposed in [13]. We run the simulations for various
SNR values, stationary noises and transient noises. We confi-
ugre the number of sequences to 4 training sequences and 20
testing sequences. Speech signals are taken from the TIMIT
database [17], and transient noise signals are taken from [18].
The sampling frequency is set to 16kHz. Furthermore, we pick
a window of size 512 for STFT calculations, m = 14 mel-
frequency bands, M = 257 as the size of the moving window



TABLE I: Proposed Voice Activity Detection Algorithm Based on Spectral Clustering
Method.

Learning algorithm:
1. Construct a training data set consisting of
L training signals {Y ` ∈ RKm+1×3N`

; ` = 1, ..., L}
and L indicator vectors {C` ∈ R3N`×4; ` = 1, ..., L}.

2. Solve the optimization problem given in (9), to find
the optimum value of the parameters (i.e. θopt).

3. Construct U by concatenation of U1 through UL

K largest eigenvectors of D−1/2WD−1/2 .
4. Fit a GMM model to the rows of U for

each cluster (see ([13])).
Output:
U , f (·;H1) and f (·;H0)

Testing Procedure:
Let zt(n) be the test sequence and Zt

the feature matrix of t-th unlabeled frame obtained by (5).
for t = 0 : T : Nz − T (T � Nz)

1. Z = Zt(:, t+ 1 : t+ P ).
2. Compute B by
B`

θopt (i, j) = exp
(∑P

p=−P −α
opt
p Q`(i+ p, j + p)

)
B =

[
(B1

θopt )T , (B2
θopt )T , · · · , (BL

θopt )T
]T

3. Compute the new representation of the unlabeled data (12)
Ũ = diag

(
(1Bknn )−1

)
BT

knn
U .

4. Compute the likelihood ratio for a new unlabeled frame

Γt =
f (Ũ(t,:);H1)

f (Ũ(t,:);H0)
.

5. The decision rule for an unlabeled time frame is given

VAt =
∑J

j=−J Γt+j

H1

≷
H0

Th .

6. Use VAt to obtain the final VAD decision.
end

to utilize in order to create the sample cloud and i = 45 as the
number of samples for each frame. The graphs of probability
of detection, Pd, vs. probability of false alarm, PFa, are
depicted in Fig 2. We use identical experiment conditions
with both the proposed algorithm and [13] in every simulation.
In Fig 3, we provide the clustering results, i.e. the U space
representation where speech labeled data is marked with blue
rings and non-speech data is marked with red crosses. The
proposed VAD algorithm has superior performance in the
entire SNR range, especially for low SNR values. Moreover,
the proposed algorithm performs better in cases of very small
training sets.

IV. CONCLUSIONS

We have presented a VAD algorithm based on spectral
clustering and diffusion kernel methods. The main challenge
was providing good results in presence of environmental noise
and transient noise in particular. The key features of the
proposed algorithm are the covariance matrix calculations via
sample clouds and the novel similarity matrix computations.
We demonstrated better results compared to a work that has
already been proven to be superior to conventional methods of
dealing transient noises, especially in cases of low SNR and

small data bases. The goal in the near future would be trying
to improve the algorithm’s results using enhanced features.
Another possible research direction would be choosing better
parameters for the GMM.

ACKNOWLEDGMENT

This research was supported by the Israel Science Founda-
tion (grant no. 1130/11).

REFERENCES

[1] AM Kondoz and BG Evans, “A high quality voice coder with integrated
echo canceller and voice activity detector for vsat systems,” in Satellite
Communications-ECSC-3, 1993., 3rd European Conference on. IET,
1993, pp. 196–200.
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(a) (b)

(c) (d)

Fig. 2: Probability of detection (Pd) versus probability of false alarm (Pfa), for various noise environments. (a) Babble noise with SNR of 5dB, and transient noise of door knocks.
(b) White noise with SNR of 5dB, and transient noise of door knocks. (c) White noise with SNR of 10dB, and transient noise of typing. (d) Babble noise with SNR of 5dB, and
transient noise of typing.

(a) (b)

Fig. 3: Clustering results of training stage for babble noise with SNR of 5dB, and transient noise of typing of (a) the proposed algorithm, and (b) the algorithm proposed in [16].


