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Abstract—Detection of defects on patterned semiconductor wafers is a
critical step in wafer production. Many inspection methods and apparatus
have been developed for this purpose. We recently presented an anomaly
detection approach based on geometric manifold learning techniques.
This approach is data-driven, with the separation of the anomaly from
the background arising from the intrinsic geometry of the image, revealed
through the use of diffusion maps. In this paper, we extend our algorithm
to 3D data in multichannel wafer defect detection. We test our algorithm
on a set of semiconductor wafers and demonstrate that our multiscale
multi-channel algorithm has superior performance when compared to
single-scale and single-channel approaches.

Index Terms—Wafer defect detection, anomaly detection, diffusion
maps, dimensionality reduction, multiscale representation

I. INTRODUCTION

Defect detection is critical to the manufacturing of semiconductor
wafers, yet relying on manual detection is time consuming, expensive
and may cause yield ratio loss. A robust automated solution to this
problem is essential, as the user will be shown only suspicious
regions, thus saving valuable time. Defect detection is challenging
as there are no precise characteristics of the possible defects and
they may include particles, open lines, shorts between lines or
other problems. Defects may belong to the wafer background or
to its pattern, and may be predominant or scarcely noticeable. This
variety makes it very difficult to perform template matching based on
some a-priori features or training database of detects, and therefore
encourages the development of unsupervised, data-driven methods.

Various image processing techniques have been applied to auto-
matic defect detection in wafers. A common approach for wafer
defect detection utilizes a defect-free reference image and detection
is performed on the difference between the reference and inspection
images [1], [2], [3]. Calculation of the difference image is very
sensitive to image registration between the reference and inspection
images, and can affect the performance of reference-based methods.
Zontak and Cohen [4], [5], introduced a method which avoids image
registration and is robust to pattern variations, based on anisotropic
kernel reconstruction of the source image using its reference image.
Defect regions are identified since they cannot be properly recon-
structed from the reference image. A semiconductor wafer typically
contains many copies of the same electrical component laid out in a
matrix pattern, and this repetitive pattern can be utilized for detection
without a reference image. Guan et al. [6] proposed to generate a
golden-block database from the wafer image itself, and then modify
and refine its content when used in further inspections of the same
pattern. Gleason et al. [7] employ fractal image encoding and active
contours for defect detection based on self-similarities within the
inspection image. Unsupervised neural networks which do not require
reference images have been proposed in [8], [9].

Recently, we presented a multiscale algorithm for anomaly de-
tection based on spectral dimensionality reduction [10], [11]. This
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approach is data-driven, with the separation of the anomaly from
the background arising from the intrinsic geometry of the image,
revealed through the use of diffusion maps [12]. The algorithm is
unsupervised, requires no prior knowledge regarding the anomaly
or the background, and does not rely on training data or reference
images. When applying diffusion maps to images, it is common
practice to perform sampling and out-of-sample extension due to the
large size of the dataset. We showed [10] that this process can limit
the success of the dimensionality reduction in revealing the presence
of anomalies in the data. To overcome these limitations, we proposed
a multiscale approach, which drives the sampling process to ensure
separability of the anomaly from the background clutter. In [11], we
presented an anomaly detection score inspired by the saliency map
developed by Goferman, Zelnik-Manor and Tal [13]. We adapted the
color-based dissimilarity measure used in [13] to the diffusion map
feature space used in our algorithm, as a noise-robust feature space is
more appropriate for the task of anomaly detection in noisy images. In
this paper, we apply our anomaly detection algorithm to the problem
of defect detection in patterned wafers, specifically multichannel
defect detection in Scanning Electron Microscope (SEM) images.
The application of diffusion maps to defect detection is extremely
appropriate as our algorithm provides a natural extension from single
channel to multichannel images, the diffusion distance is robust to the
noise in the SEM images and the diffusion map provides a compact
representation of the repetitive geometry of the wafer.

The paper is organized as follows. Sec. II reviews the diffusion map
framework for dimensionality reduction and Sec. III describes out-of-
sample extension methods and their limitations in anomaly detection.
In Sec. IV, the proposed multiscale algorithm is presented. Finally,
Sec. V demonstrates the application of the proposed algorithm to
defect detection in SEM images of patterned wafers.

II. DIFFUSION MAPS

Real world data is usually represented with features of high di-
mensionality, yet can be shown to lie on low-dimensional manifolds.
Finding a low-dimensional representation of the data is necessary to
efficiently handle it and the representation usually reveals meaningful
structures within the data. In recent years, a large number of nonlinear
techniques for dimensionality reduction have been proposed, some of
which are spectral methods, based on the eigenvectors of adjacency
matrices of graphs on the data [14], [12]. These methods take into
account the geometry of the dataset and the representation they yield
preserves local neighborhood information. Diffusion maps [12] is one
such technique, based on the construction of the graph Laplacian of
the dataset.

Let Γ = {x1, .., xn} be a high-dimensional set of n data points.
A weighted graph is constructed with the data points as nodes
and the weights of the edges connecting two nodes is a measure
of the similarity between the two data points. The affinity matrix



W = w(xi, xj), xi, xj ∈ Γ is required to be symmetric and non-
negative. The choice of the weight function should be determined
by the application, since it conveys the local geometry of the
dataset. A common choice is a Radial basis function (RBF) kernel
w(xi, xj) = exp

{
−‖xi − xj‖2/σ2

}
, where σ > 0 is a scale

parameter. A random walk is created on the dataset by normalizing
the kernel:

P = D−1W, (1)

where D(i, i) =
∑

j∈Γ w(xi, xj). The row-stochastic matrix P
satisfies p(xi, xj) ≥ 0 and

∑
j∈Γ p(xi, xj) = 1 and can be viewed

as the transition matrix of a Markov chain on the dataset Γ. The
spectral decomposition of P yields that t steps of the Markov chain
can be presented as

pt(xi, xj) =
∑
l≥0

λt
lψl(xi)φl(xj), (2)

where φl and ψl are the biorthogonal left and right eigenvectors,
respectively, and |λ0| ≥ |λ1| ≥ ... ≥ 0 are the sequence of
eigenvalues.

A diffusion distance dDM(xi, xj ; t) between two points xi, xj ∈ Γ
is defined using the eigen-decomposition of P (2) by

dDM(xi, xj ; t) =
∑
xk∈Γ

(
pt(xi, xk))− pt(xj , xk)

)2
φ0(xk)

=
∑
l≥1

λ2t
l (ψl(xi)− ψl(xj))

2.

(3)

This measures the similarity of two points according to the evolution
of their probability distributions in the Markov chain. This metric is
robust to noise, since the distance between two points depends on all
possible paths of length t between the points. Due to the spectrum
decay, the diffusion distance can be approximated using only the first
` eigenvectors. Thus, the computational complexity of the diffusion
distance is low given the eigen-decomposition of P.

Equation (3) implies that a mapping can be defined between
the original space and the eigenvectors ψl, defining a new set of
coordinates for the dataset Γ, such that the diffusion distance is equal
to the Euclidean distance in this new embedding. Retaining only the
first ` eigenvectors, the diffusion map embeds the dataset Γ into the
Euclidean space R`:

Ψt : xi →
(
λt

1ψ1(xi), λ
t
2ψ2(xi), ..., λ

t
`ψ`(xi)

)T
. (4)

Note that ψ0 is not used because it is a constant vector. We set t = 1
since running the Markov chain forward can join the defect with the
background.

The scale parameter σ is of great significance in constructing the
weighted graph. Specifically in the setting of anomaly detection,
setting σ to be too large will connect the anomalies with the cluttered
background. Assuming the anomaly to be in a low density neighbor-
hood and the background to belong to a high density neighborhood,
a local scale factor is beneficial, such as the one proposed by Zelnik-
Manor and Perona [15]. The scale σ is calculated for each point xi
based on the local statistics of its neighborhood:

σi = ‖xi − xK‖2 (5)

where xK is the K-th nearest neighbor. The similarity kernel is then
calculated as w(xi, xj) = exp

{
−‖xi − xj‖2/σiσj

}
.

III. FUNCTION EXTENSION

The size of the dataset for images is very large. Therefore, it can be
computationally inefficient to construct a diffusion map using all the
pixels in the image, especially for high-resolution images. Instead, it
is a common approach [16], [17] to construct the diffusion map for
an image using a subset of random samples, Γ ⊆ Γ, and then the
diffusion map coordinates Ψ are extended to the set of all patches in
the image Γ using an out-of-sample extension method.

The Nyström method is a common method for extending functions
from a given training set to new samples. Different methods have
been proposed to approximate the Nyström method or improve
upon it, such as the Geometric Harmonics method [18]. Recently,
a new algorithm was presented for out-of-sample function extension
using the multiscale Laplacian pyramid [19]. At each iteration, the
Laplacian pyramid algorithm constructs a coarse approximation of
a function f for a given scale. Then, the difference between f and
the coarse approximation is used as input for the next iteration. The
difference is approximated at each level using a Gaussian kernel with
increasingly finer scales. For more details, see [19]. We perform this
extension method for each diffusion coordinate f = Ψl, l ∈ {1, ..., `}
separately. The number of levels in the pyramid extension can differ
between coordinates, dependent on their smoothness over Γ. A
smooth function can be extended using coarse scales, i.e. will not
require many levels of the pyramid. An oscillating function on the
other hand will require finer and finer levels of the pyramid to enable
an accurate extension.

As discussed in [10], out-of-sample extension methods can cause
anomaly detection to fail, depending on the set of random samples
Γ ⊆ Γ used to construct the diffusion map. In a case where there are
no anomalies, or defects, in Γ and it consists only of samples from a
single n-dimensional cluster (the background), then the eigenvectors
capture only the relaxation process within this cluster [20]. In such
a case, the diffusion map will not capture the difference between
the defect and the background, and the out-of-sample extension of
the diffusion map to the pixels in the defect region will not succeed
in assigning them new coordinates which separate them from the
background. Thus, defect detection when the samples from the defect
are not included in the initial diffusion map requires extrapolation of
the diffusion coordinates and not interpolation. However it is not
clear how to perform extrapolation on the low-dimensional manifold,
if at all possible. This is a “chicken and egg” problem in which it
is necessary to sample the defect for the purpose of detecting it. To
overcome this limitation of the out-of-sample extension, we propose
a multiscale method which drives the sampling process and ensures
the inclusion of samples from the defect region in Γ.

IV. MULTISCALE ANOMALY DETECTION

To overcome the limitations of random sampling, we propose a
multiscale approach. The defects in the inspection image are larger
than a single pixel. Hence, they can be detected at several resolutions
of the image. At a lower resolution, it is computationally possible to
sample a larger percentage of the image for the construction of the
diffusion map. Thus, detecting a defect at a lower resolution is less
likely to fail due to sampling. In addition, performing detection at
different resolutions of the image increases the robustness to miss-
detections, since even if the defect is missed on a coarse level due
to its size, it can still be detected on the following finer levels. In
addition, it is possible to lower the threshold for detection on the
coarser levels, since this will not harm the false alarm rate as a
decision is only reached at the full-scale level. Thus, we are able
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Fig. 1: Flowchart of the multiscale algorithm.

to detect defects on the higher levels, even at the cost of detecting
more false alarms, since these false alarms will be removed at the
final level.

Our multiscale approach is based on constructing a Gaussian
pyramid representation of the image [21], yielding {Gl}Ll=0, where
G0 is the original image and GL is the coarsest resolution. Starting
with GL, a subset ΓL of random pixels is sampled from the image.
Since the image at this level is at very low resolution, the subset
can include all pixels, depending on memory constraints. Using the
diffusion coordinates, a detection score SL is calculated for all pixels
and then a threshold τl on the score determines suspicious pixels.
Proceeding to the image GL−1, pixels which correspond to the
suspicious pixels found in GL are included in ΓL−1. The rest of the
pixels in ΓL−1 are sampled randomly from the image. The threshold
τl used at the output of each level is chosen to be the 95th percentile
of the detection score for that level. If the image does not hold a
defect this will result in random samples with the highest scores. If
the image holds a defect, the defect will have a high score compared
to the rest of the image and it will be sampled more densely in the
next level.

The process of sampling, dimensionality reduction and anomaly
detection continues from level to level, with each previous level
providing prior information on which samples of the dataset will
be used in Γl to construct the diffusion map. At the full-scale level
G0, the detection score for each pixel determines the existence of
defects in the image. We use a hard threshold τ on S0 and then
smooth the resulting image. Defects have a high score, close to 1.
Figure 1 presents a flowchart of the algorithm. This approach greatly
increases the detection rate of the diffusion-based defect detector,
compared with a single scale approach.

A. Multi-Channel Defect Detection

In wafer inspection, the analyzed wafer is illuminated with elec-
trons, which causes interactions on the surface of the wafer. These
interactions lead to subsequent emission of electrons that provides
information about the edges and the material of the inspected wafer.
This information is rendered into a two-dimensional intensity distri-
bution that can be stored as a digital image and analyzed for defect
detection. An SEM tool that is manufactured by Applied Materials
can simultaneously produce three different images for a given sample,
namely External1, External2 and Internal images. The external images
indicate the topography of the sample by light and shadows as if a
“light source” is directed to a sample from top-left (External1) or
top-right (External2), and are more noisy than the Internal image.
The Internal image provides information about edges and material of
the sample. Spatial alignment of the three images is a byproduct
of the imaging process. Defects may appear more salient in one

Fig. 2: Defects in two patterned wafers (top row and bottom row).
(a) Image pixels colored according to RGB color associated with the
first three coordinates of the diffusion map. (b) Anomaly score for
multichannel multiscale (MCMS) method. Only the defects receive
a high score.

channel than in others, and may not even be noticeable in the other
channels. However, given an arbitrary defect, it is impossible to know
in advance in which channel the defect is distinct. Hence, information
from all three channels should be incorporated.

Our algorithm provides a natural extension from two-dimensional
images to three-dimensional data as in this application. For a mul-
tichannel image, the feature vector associated with each pixel is the
Np×Np×nc patch surrounding the pixel, ordered as a column, where
nc = 3 is the number of channels. The resulting diffusion map for
multichannel images is dominated by both the geometry of the data,
revealed by integration of the three channels, and the presence of the
defect, which is distinct in at least one channel. Fig. 2 demonstrates
the compact and denoised representation achieved by diffusion maps
when applied to two multi-channel SEM wafer images (top row
and bottom row). For display purposes, the first three coordinates
of the diffusion map (Ψ1,Ψ2,Ψ3) are mapped to RGB values
[0, 255]× [0, 255]× [0, 255]. Then, each pixel in the image is colored
(Fig. 2(a)) according to the RGB value assigned to its diffusion co-
ordinates. The representation obtained by the diffusion map provides
both a denoising of the image and a compact representation of the
intrinsic geometry of the patterned wafer, integrating information
from all three channels, and assigning repetitive components such as
edges distinct values. Also, as expected, the defect is easily separable
from the background in the diffusion embedding, as demonstrated by
the high detection score of the defects in Fig. 2(b). Note that this
display is only of the first three coordinates of the diffusion map and
additional coordinates provide additional information on the geometry
of the patterns and the defect.

The dimension of the diffusion map (4) depends only on the
random walk (1) and is independent of the length of the feature
vector used in the original representation of the data. Thus, using a
multichannel feature vector does not entail a higher diffusion map
dimension compared to using a single channel feature vector.

The detection problem can be viewed as a clustering problem
in which we are separating between background clusters and the
anomaly cluster. Using a combined multichannel feature vector



translates into adding dimensions in which the anomaly is distinct
from the background. This increases the distance between the cluster
centers, which leads to fewer misidentifications [22].

B. Saliency-based Detection Score

In [11], we introduced a saliency-based anomaly detection score.
This score was inspired by the local-global dissimilarity measure
defined between two image patches by Goferman et al. [13]:

d(pi, pj) =
dcolor(pi, pj)

1 + c · dposition(pi, pj)
(6)

where dcolor is a color distance between patches and dposition is the
Euclidean distance between the image positions of patches pi and pj ,
normalized by the larger image dimension. This measure realizes the
authors’ observations that background pixels are similar to both near
and far pixels, whereas salient patches are grouped together, therefore
similar only to nearby patches. Normalizing the color distance by
the spatial distance penalizes background pixels by assigning them
a low distinctness value. In addition, the authors note that in order
to evaluate the distinctness of a patch it is sufficient to consider its
K most similar patches {qk}Kk=1 (K = 64), and not calculate its
dissimilarity to all image patches.

These observations holds for anomaly detection as well. The
problems of anomaly detection and saliency in images are closely
related, where an anomaly can be viewed as a salient object in
the image. However, while saliency is important in natural images,
anomaly detection is usually performed in images which are not
natural and suffer from noise, such as in the given defect detection
problem in SEM images. Thus, instead of using dcolor, the color
distance between patches, we proposed using the diffusion distance,
which is preferable in our application as it is robust to noise.
Also, the diffusion embedding better separates the anomaly from
the background, compared to using image patches. This requires
normalizing the diffusion distance such that most values are spread
out in the range [0, 1] and therefore comparable to dposition. The
detection score we proposed is given by

S(i)DM = 1− 1

K

K∑
k=1

exp

{
− dDM(pi, qk)/2σK

1 + c · dposition(pi, qk)

}
, (7)

where c = 3 and σK is a normalizing factor given by the
standard deviation of the distances to the Kth neighbor: σK =
std
i∈Γ
{dDM(pi, qK)}. This score has the following advantages:

• Background regions which have similar diffusion coordinates,
yet are spatially distant from one another in the image are
suppressed. On the other hand, pixels from defects lie close
together, yet are distinct from all other regions, thus they receive
a high score.

• No prior knowledge is required regarding the defect size.
• This score requires very little fine-tuning, only K and c need to

be determined.
For more information on this score and its performance in other
applications, see [11]. Our code is available at [23].

V. EXPERIMENTAL RESULTS

We demonstrate the proposed algorithm on SEM patterned wafer
images, achieving a high detection rate with a low rate of false-
alarms. We treat the defects in the images as anomalies and the
patterned wafer is considered normal background clutter. We eval-
uated our algorithm on a set of 36 images of size 200× 200 pixels.
The parameters of the multiscale detector are given in Table I, for a

TABLE I: Parameters Used in Multiscale Detector.

Pyramid
Level

Patch size
(Np ×Np)

Embedding
Dimension

Percentage of
pixels in subset

0 8x8 6 0.10
1 4x4 6 0.33
2 2x2 3 0.5

Gaussian pyramid of L = 3 levels. Note that the size of the images
enables denser sampling of the image than what we used, however
we intentionally use a small percentage of the pixels to demonstrate
that this framework is also applicable for larger images.

Detections are found by applying a threshold to the detection
score image, resulting in a binary image. A detection is a connected
component (CC) in the binary image. A CC containing the defect is a
true positive (TP) and any other CCs are false alarms (FA). The size
of the CC can be used to reject noisy detections, where small CCs
are discarded. We compare two thresholds on the area of the CC:
5 pixels and 20 pixels. Using a larger threshold on the size rejects
more FAs, but can also result in a decreased amount of TPs, for small
sized defects. We compared the percentage of TPs for each method
for a given FA rate. Results are given in Table II.

We compare our proposed multi-channel multiscale algorithm
(MCMS) with four other methods. The first three methods perform
single-channel multiscale detection on each of the three channels:
External1, External2 and Internal, separately, using the parameters
given in Table I. The fourth method is MCSS, a single-scale method
using the full-size image. The parameters of MCSS are the same as
those for pyramid level 0 in Table I, however 20% of the image is
randomly sampled to construct the diffusion map. For all methods,
the detection score is the one described in Sec. IV-B.

Our new MCMS approach has the highest TP rate. Comparison
to the three single-channel methods demonstrates that the defects are
usually not apparent in all three channels, and combining information
yields the best results. We can see that the Internal channel is usually
the least informative, and although both External images hold similar
topographical information, their performance is not identical. Also, as
in our previous work, using a multiscale approach results in increased
performance compared to performing detection only on the full-scale
image. The poor performance of the single-scale detector, MCSS,
reveals the limitations of sampling the image compared with the
multiscale detectors, which have a significantly better detection rate.
Indeed, this shows that having more information on the presence of a
defect by combining the three channels as in MCSS is less beneficial
to defect detection than properly sampling a single channel, as in the
single-channel multiscale detectors.

We present an example of all detection methods for a given
patterned image in Fig. 3. For External2-MS, Internal-MS and MCSS,
Fig. 3 (f),(g) and (h) respectively, there are no detections with high
score. Thresholding the image with a low threshold will reveal the
defect for Internal-MS and MCSS, but will also cause many FAs.
External1-MS, Fig. 3 (e), detects the defect with a high score but also
has a FA with similar score. Only in MCMS, Fig. 3 (d), the defect
receives a high score, while all other regions receive low scores.

VI. CONCLUSIONS

We have extended our multiscale anomaly detection algorithm
to 3D data in multichannel wafer defect detection. The proposed
algorithm is tested on a dataset of semiconductor wafer SEM images
and demonstrated superior performance when compared to single-
scale and single-channel approaches. Our method, based on diffusion



Fig. 3: Defect in a patterned wafer. (a)-(c) Source images in different channels: External1, External2 and Internal respectively, defect marked
with a red arrow. Anomaly scores for multichannel multiscale (MCMS) method (d), single channel multiscale method in External1 (e),
External2 (f) and Internal (g) channels, and for multichannel single-scale (MCSS) method (h).

TABLE II: Percentage of True Positives for Given Numbers of False
Alarms.

size=5 size=20
# of FA 10 3 0 10 3 0
MCMS 97% 97% 97% 97% 97% 92%
MCSS 70% 70% 61% 70% 67% 58%

External1-MS 89% 89% 78% 92% 89% 83%
External2-MS 92% 92% 89% 94% 92% 89%
Internal-MS 75% 75% 75% 75% 75% 75%

map embedding, is especially attractive in this application as the
diffusion map provides a compact representation of the repetitive
geometry in the wafer image, obviating the need for a reference
image, and in addition is robust to the dominant noise in these images.
This algorithm was previously applied to side-scan sonar images in
the detection of sea-mines. This paper demonstrates the robustness
of the proposed algorithm and its robustness to the imaging sensor,
background and noise models.
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