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Abstract—Voice activity detection in the presence of highly
non-stationary noise and transient interferences is an open
problem. State-of-the-art voice activity detectors which are based
on statistical models usually assume that noise is slowly varying
with respect to speech. This assumption does not hold for
transient interferences which are short time interruptions, and
the performance of these detectors significantly deteriorates.
In this paper, we propose a supervised learning algorithm for
voice activity detection which is designed to perform in the
presence of transients. We consider a labeled training set which
comprises speech, background noise and transients, and propose
a continuous measure for voice activity based on the Support
Vector Machine (SVM) classifier. The measure of voice activity is
constructed in a features domain, where the features are based
on the scattering transform, include noise estimation, and are
designed to separate speech and non-speech frames. Experimen-
tal results demonstrate that the proposed algorithm outperforms
state-of-the-art detectors for different types of background noises,
and in particular accurately classifies frames which contain
transient interferences.

Index Terms—Voice activity detection, impulse noise, transient
noise, Scattering transform.

I. INTRODUCTION

Accurate voice activity detection is necessary for a variety
of speech processing applications such as speech recognition
and coding, and dominant speaker identification [1]. Early
methods for voice activity detection are based on straight-
forward features such as the energy of the signal and zero-
crossing rate [2]. Although these methods perform well for
clean signals, their performances deteriorate in the presence
of background noise since for example the zero-crossing rate
may be increased due to the background noise, wrongly indi-
cating voice activity. To overcome this problem, several Voice
Activity Detectors (VADs) which assume statistical models for
the input signal and the noise, and are based on Likelihood
Ratio Test (LRT) were presented in recent years. Among the
different statistical models are the Gaussian model [3], [4],
the Laplacian model [5], [6], [7] and the generalized Gamma
model [8]. These methods typically assume that the noise is
slowly varying with respect to speech and perform well in the
presence of stationary noise. This assumption does not hold for
highly non-stationary noise and transient interferences, which
are short time interruptions such as keyboard typing and door
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knocking [9], [10], [11], and hence the performances of these
methods significantly deteriorate.

Recently, A supervised learning algorithm for voice activity
detection in the presence of highly non-stationary noise was
presented in [12]. The algorithm comprises features selection
procedure, where the feature are based on the Mel-Frequency
Cepstral Coefficients (MFCC) and noise estimation. Then, a
spectral clustering method is applied in the features domain for
the classification process. Although the algorithm was shown
to outperform several state-of-the-art methods, its performance
are still limited in the presence of transients since the transients
and speech are only partially separated in the features domain.

In this paper, we present a supervised learning algorithm
for voice activity detection in the presence of highly non-
stationary noise and transients. To train the algorithm, we
consider a labeled training data set of speech signals con-
taminated with noise and transients. The algorithm is based
on the representation of the noisy signal by features which
are based on the scattering transform [13], [14], [15], include
noise estimation, and are specifically designed to separate
speech and non-speech frames. For voice activity detection,
we propose a continuous measure which is constructed in
the features domain, and rely on the SVM classifier. The
algorithm is evaluated for different types of background noises
and transients, and experimental results demonstrate improved
voice activity detection compared to state-of-the-art methods.

The remainder of the paper is organized as follows. In
Section II we formulate the problem. The proposed algorithm
is described in Section III. Experimental results demonstrating
the performance of the algorithm are presented in Section IV.

II. PROBLEM FORMULATION

Let y(τ) denote a speech signal contaminated with additive
background noise and an additive transient interference, given
by:

y(τ) = x(τ) + d(τ) + z(τ) (1)

where x(τ),d(τ) and z(τ) are speech, the background noise
and the transient interference, respectively. The signal is
processed in overlapping time frames of length T , such that
time frame t is denoted by yt and is given by y(τ); τ ∈
[t − T/2 , t + T/2]. Let 1s(t) denote a speech indicator of



frame t, given by:

1s(t) =

{
1 ; t ∈ H1

0 ; t ∈ H0

}
(2)

where H1 and H0 are two hypotheses denoting speech pres-
ence and absence, respectively. The goal in this paper is
to estimate the speech indicator in (2) for each frame. The
algorithm is based on a supervised learning procedure, and
we consider a training data set which consists of speech
signals contaminated with noise and transients, and is labeled
according to the speech absence and presence hypotheses.

III. PROPOSED ALGORITHM

A. The Features

The proposed features are based on the scattering transform
which is a cascade of wavelet convolutions and modulus
operators [13], [14]. Let a wavelet ψ(τ) be a band pass filter
with a central frequency normalized to 1, and let {ψλ(τ)}λ
be a wavelet filter bank, which is constructed by dilating the
wavelet:

ψλ(τ) = λψ(λτ), (3)

where λ = 2j/Q, ∀j ∈ Z and Q is the number of wavelets per
octave. The bandwidth of the wavelet ψ(τ) is of the order of
1/Q, and as a result, the filter bank is composed of band pass
filters which are centered in the frequency domain in λ and
have a frequency bandwidth λ/Q, i.e., they are logarithmically
spaced in the frequency domain. The first and the second
orders of the scattering transform are denoted by, S1(τ, λ1)
and S2(τ, λ1, λ2), respectively, and are given by:

S1(τ, λ1) = |y ∗ ψλ1
| ∗ φ(τ), (4)

and:
S2(τ, λ1, λ2) = ||y ∗ ψλ1

| ∗ ψλ2
| ∗ φ(τ), (5)

where φ(τ) is a low pass filter with a frequency bandwidth
2π/T . A scattering vector of frame t is denoted by ySt and is
given by concatenating the first and the second orders of the
scattering transform calculated at time t for each filter.

The scattering transform is invariant to time shifts and is
stable to time-warping due to the logarithmically spaced filter
bank, making it useful for classification (see more details
in [13], [14]). These properties are also held for the Mel-
Frequency Spectral Coefficients (MFSC) obtained by averag-
ing the signal in the Short-Time Fourier Transform (STFT)
domain with Mel-scale filters which are also logarithmically
spaced in the frequency domain for high frequencies [14]. In
addition, it is shown in [14] that the MFSCs are similar to
the coefficients of the first order of the scattering transform.
The MFCCs are given by applying a cosine transform on the
log of the MFSCs, they are widely used in speech recognition
[16], and were recently exploited for voice activity detection
in [12]. However, the averaging in the frequency domain in the
construction of the MFSCs and MFCCs removes information
over small time scales [14]. Similarly, the convolution with the

low pass filter in (4) causes loss of information. In particular,
the representation of transients which are usually short in time,
may be similar to the representation of speech, and may lead
to false voice activity detection in the presence of transients.
The second order of the scattering transform recovers the lost
information using a new set of wavelet filters and the modulus
operator [13], [14]. Therefore, the representation of signals
using the first and the second orders of the scattering transform
extends the MFCC representation and better separates between
speech and transients.

Yet, non-speech frames which are contaminated with back-
ground noise may be similar to speech frames. In order to
improve the separation between speech and noise frames,
the scattering vector ySt is weighted with a scalar which
incorporates noise estimation in the STFT domain [12]. Let
Y (t, ω) be the STFT of y(τ), and let pr(Y (t, ω);H0) and
pr(Y (t, ω);H1) be Probability Density Functions (PDF) of
the noisy signal conditioned on the hypotheses H0 and H1,
respectively. The log of the likelihood ratio between the
conditional PDFs is given by:

Λt(ω) = log

(
pr(Y (t, ω);H1)

pr(Y (t, ω);H0)

)
. (6)

Λt is a scalar obtained by averaging the log of the likelihood
ratio in (6) over the frequency scale, and is used to weight the
features. The weight of frame t is denoted by wt and is given
by:

wt = 1− e−
Λt
ε

where ε is a normalization parameter. Accordingly, the feature
vector of frame t is given by:

yt = wty
S
t . (7)

In frames which contain merely background noise, Λt receives
low values since pr(Y (t, ω);H1) → 0 in (6), and ε is set
such that wt receives values close to 0. In speech frames,
Λt in (6) receives high values, and wt receives values close
to 1. Λt is estimated according to [3] and incorporates noise
estimation procedure which is based on the assumption that
noise is (quasi) stationary and is slowly varying with respect
to speech [17], [18]. Since transients are highly non-stationary
signals and are varying faster than speech, high values of Λt
are obtained also in presence of transients. As a result, wt
receives values close to 1 both in the presence of speech and
transients, and is used in this work to separate noise from the
non-stationary part of the signal, i.e. speech and transients.
Therefore, the proposed features allows for the separation
of speech from noise using the weighting scalar and from
transients, using the second order of the scattering transform.

B. Voice Activity Detection

We base the estimation scheme on the SVM procedure.
Originally, this procedure provides a binary classification of
feature vectors according to their position with respect to a
hyperplane, which is optimized using the labeled training data



to maximize inter class separation. In this paper, we propose
a continuous measure for voice activity which is based on
the distance of the tested features to the hyperplane such
that the classification is given by comparing the measure to
a threshold. The advantage of a continuous measure over a
binary classification is that the threshold value, which controls
the tradeoff between false alarm and correct detection rates,
may be adjusted to a specific application. Let n ∈ RK be the
normal vector (not necessarily normalized) to the hyperplane,
and let b be a parameter such that b/||n|| is the offset of the
hyperplane from the origin, where || · || is the L2 norm. The
distance of a tested feature vector yt from the hyperplane,
denoted by Lt, is given by:

Lt =
< yt,n > +b

||n||
.

Note that for simplicity, we relate to a linear SVM, while
the extension to a kernel SVM is straightforward. In a binary
classification, yt is classified according to the sign of Lt such
that yt is considered as a speech frame if (say) Lt > 0 and
as a non-speech frame otherwise. In this work we propose
a continuous measure for voice activity which exploits the
dynamical range of Lt rather than its sign, and in particular, we
assume that large values of Lt indicate on high probability of
voice activity in frame t. To define the voice activity measure,
we first reduce the dynamical range of Lt by applying a soft
threshold. The distance with a reduced dynamical range is
denoted by Ĺt and is given by:

Ĺt =

 Lmin ; Lt < Lmin

Lt ; Lmin < Lt < Lmax

Lmax ; Lt > Lmax

 , (8)

where Lmin and Lmax are constant distances from the hyper-
plane such that beyond them speech is assumed to be absent
and present, respectively. Lmin and Lmax are empirically set to
be half of the maximal negative and positive distances from
the hyperplane in the training set, respectively. Then, Ĺt is
normalized to provide values in the range of 0 ÷ 1, and the
normalized distance, denoted by L̃t, is given by:

L̃t =
Ĺt − Lmin

Lmax − Lmin
. (9)

The voice activity measure, denoted by Pt, is given by
averaging L̃t over 2J + 1 temporally neighboring frames:

Pt =
1

2J + 1

t+JT∑
j=t−JT

L̃j , (10)

where J is a non-negative parameter that defines the temporal
neighborhood. The value of Pt is in the range of 0 ÷ 1, and
the higher Pt the higher the probability for speech presence
in frame t. By taking into account several consecutive frames
in (10), the effect of transients on the voice activity measure
is attenuated since their length is assumed to be of the order
of a single frame. The speech presence indicator defined in
(2) is estimated by comparing the speech presence measure

Pt to a threshold α such that the estimated indicator, denoted
by 1̂s(t), is given by:

1̂s(t) =

{
1 ; Pt > α
0 ; otherwise

}
. (11)

IV. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the pro-
posed algorithm and compare it to the methods presented
in [3], [4] and [12], which are called “Sohn”, “Ramirez”
and “Mousazadeh” in the plots, respectively. The algorithm is
evaluated for different types of background noises, including
white Gaussian noise, colored Gaussian noise and babble
noise, and different types of transients e.g. door knocks and
keyboard taps. The SNR is defined as the ratio between the
speech energy and the background noise energy such that the
latter is calculated in frames where speech is present. The
transients are normalized to have the same maximal amplitude
as speech. This is a common setup rather than defining a signal
to transient ratio due to the short duration of the transients [12].

The simulated signals are sampled at 16 kHz and are
processed in consecutive time frames of length T = 32 ms
(512 samples) with 50% overlap. The speech utterances used
in the experiments are taken from TIMIT database [19].
The training set is composed of 20 speech utterances, and
the test set, is composed of different 30 speech utterances.
Each utterance is approximately of 9 s long and following
the experimental setup in [12] is composed of three parts.
The first part contains speech and background noise (without
transients), the second part contains background noise and
transients (without speech) and the third part contains the all
three signals- speech, background noise and transients.

For the implementation of the proposed algorithm, we use
the scattering transform library available in [20]. We exploit
the Morlet wavelet similarly to [14] and set the quality factor
to a small value Q = 1 for both the first and the second orders
of the transform. Note that this choice of the quality factor
Q provide filters with a small time support and they better
characterize transients which are assumed to be of a short
length. In addition, we use filters with a central frequency
λ > 2π/T such that the filter bank {ψλ}λ adequately covers
the frequency axis. The number of the coefficients of a single
frame for this setting is 9 and 36 for the first and the
second orders of the scattering transform, respectively. The
normalization parameter in (7) is set to ε = 3, as was proposed
in [12]. For the voice activity measure, the hyperplane of the
SVM is optimized using standard MATLAB software using a
Gaussian kernel with a variance σ2 = 1 and the soft margin
parameter is set to 1. We remark that these parameters are
set to the default values of the software, they may be further
optimized using a validation set to improve the classification
results, and their optimization is not in the scope of this paper.
In addition, we empirically set the smoothing parameter in (10)
to J = 2, which induce a lag of 32 ms.

Both for training the algorithm and for evaluating its per-
formance on the test set, a ground truth is set according to



the clean speech signal. A frame is considered as a speech
frame if the energy of the clean signal in the frame is above
a certain threshold α̃. Namely, the speech indicator defined in
(2) is given by:

1s(t) =

{
1 ; ||xt||2 > α̃
0 ; otherwise

}
(12)

where xt is the clean speech signal in frame t. The threshold
α̃ is set as the maximal threshold such that thresholding the
speech signal has negligible auditory effect [12].

The performance of the algorithms is evaluated in the form
of Receiver Operating Characteristic (ROC) curves, i.e. plots
of probability of detection versus the probability of false alarm.
The ROC curves are generated by sweeping the threshold over
all possible values of the voice activity measure Pt in (10). We
use two types of probabilities of false alarm as in [12]. The
first is denoted by Pfa and is defined as the probability that a
non-speech frame (which may contain a transient or may not)
is detected as a speech frame. The second is denoted by Pfatr

and is defined as the probability that a non-speech frame that
contains a transient is wrongly detected as a speech frame.
Namely, Pfa allows for evaluating the general performance
of the algorithms, while Pfatr provides an insight on the
performance of the algorithms in frames where transients are
present. Note that the ground truth for the transients which is
used for the evaluation of Pfatr is set in a similar way to the
speech presence ground truth in (12). In addition, we evaluate
the performance of the algorithm in terms of the Area Under
the Curve (AUC) score, which is a scalar measure given by
integrating the probability of detection over all values of false
alarms. The AUC score of each method is given in percents
in the legend box of each plot, and the higher the AUC the
better the performance of the algorithm.

The experimental results are presented in Figures 1 to 3. It
can be seen that both the proposed method and the method
presented in [12], which are specifically designed to perform
in a highly non-stationary acoustic environment, significantly
outperform the methods presented in [3] and [4]. In addition,
the proposed method outperforms the method presented in
[12], and in particular provides higher classification results in
the presence of transients as demonstrated by the plots with
the second type of false alarm Pfatr.

V. CONCLUSIONS

We have presented a supervised learning algorithm for voice
activity detection. The algorithm incorporates features extrac-
tion procedure, where the features are based on the scattering
transform, and allow for a good separation between speech
frames and non-speech frames which contain transients. In
addition, the features incorporate noise estimation procedure
and low weights are assigned to non-speech frames which
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Fig. 1: (a) Probability of detection vs probability of false alarm
(Pfa), and (b) Probability of detection vs probability of false
alarm in transient frames (Pfatr). Test for a Gaussian noise
with 0 dB SNR and keyboard typing transients.

contain background noise, separating them from the speech
frames. The features are used to define a continuous measure
for voice activity based on the SVM classifier. The proposed
algorithm outperforms state-of-the-art VADs and in particular
provides enhanced voice activity detection in presence of
transients.
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