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Abstract—Superdirective beamforming is a well-known method for

enhancement of reverberated speech signals. Nevertheless, it is very
susceptible to errors in the sensor array characteristics, thermal noise,

and white noise input, resulting in a low level of white noise gain,

particularly at low frequencies. It is of great interest to develop a

beamformer with superior enhancement of reverberated signals, having
a high directivity factor, together with a relatively high white noise gain

level.
In this paper, a solution which controls both the directivity factor

and the white noise gain is examined. We propose a linear weighted

combination of two conventional beamformers, the regularized superdi-
rective beamformer and the delay-and-sum beamformer. We analyze the

beamformer gain responses, and consequently derive two user-determined

frequency-dependent white noise gain and directivity factor beamformers,
respectively. Simulation results approve our findings, and show of a

robust user-controlled solution, with an effective tradeoff between the

performance measures of the beamformer.

I. INTRODUCTION

Microphone array processing for speech signals is a challenging

task of great importance. Speech signals propagating in a closed envi-

ronment frequently suffer from reverberation and noise, distorting the

quality and the intelligibility of the perceived signals. Beamforming

represents a class of multichannel signal processing algorithms, that

enable an extraction of desired source signals together with a sup-

pression of undesired noise and reverberation [1]–[3]. Superdirective

beamforming is a well-known approach that ensures high gain for

reverberated signals, modeled by a diffuse noise input [4]. However,

its high sensitivity to spatially white noise, significantly degrades its

performance in practice [1], [4]–[6]. Slight errors between the array

characteristics, such as position errors and mismatches between the

sensors, pass through the beamformer like spatially white noise or

uncorrelated noise. Therefore, the white noise gain is an important

measure for the robustness of the beamformer.

Extensive research was conducted regarding the design of such

an adaptive robust beamformer, that would have both high array

gain and a satisfying level of white noise gain [1]–[9]. In [6], Cox

et al. formulated the problem and introduced few approaches for

the optimization problem. They presented a conventional optimal

constrained solution, and proposed different methods to implement

it [5], [6]. Others handled different types of beamforming mismatch

errors, such as an arbitrary-type mismatch approach [10], or various

models of the problem, such as worst-case optimization [7] or other

optimization methods [11]. Recently, we proposed an approach of a

robust beamformer with fine control of the array gain response (i.e.,

the directivity factor) and the white noise gain measure [8].

In this paper, we expand our solution [8], dealing with an optimiza-

tion problem of the directivity factor maximization under constraint

of the white noise gain. The suggested approach offers a simple

optimized beamformer, as oppose to most of the familiar state-

of-the-art solutions, which involve iterative solutions [6] or linear
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programming methods [7]. Similar to the analysis in [8], we propose

a closed-form solution of a beamformer with user-defined fine control

on the white noise gain and the directivity factor. We suggest a linear

weighted combination of two conventional beamformers, enabling

simple yet effective control of the filter response. Based on that,

we derive filters which attain any desired frequency-dependent white

noise gain or directivity factor.

The paper is organized as follows. In Section II, we describe

the signal model and formulate the problem. In Section III, we

present conventional fixed beamformers, one that maximizes the

white noise gain and another that maximizes the directivity factor.

In Section IV, the proposed beamformer is introduced. Based on

that, we derive beamformers with user-determined white noise gain

or user-determined directivity factor. This approach is based on a

combination of the aforementioned conventional beamformer with

the regularized adapted beamformer. This method provides a user-

determined management of both white noise gain and directivity

factor, and attains an effective tradeoff between the two measures.

Finally, simulation results demonstrating the beamformer properties

are presented in Section V.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Let us consider a source signal (plane wave), in the farfield,

propagating in an anechoic acoustic environment at the speed of

sound, i.e., c = 340 m/s, and impinging on a uniform linear

sensor array consisting of M omnidirectional microphones, where the

distance between two successive sensors is equal to δ. The direction

of the source signal to the array is parameterized by the azimuth

angle θ. In this context, the steering vector (of length M ) is given

by

d(ω, θ) =
[

1 e−ωτ0 cos θ · · · e−(M − 1)ωτ0 cos θ
]T

,

(1)

where the superscript T is the transpose operator,  =
√
−1 is

the imaginary unit, ω = 2πf is the angular frequency, f > 0 is

the temporal frequency, and τ0 = δ/c is the delay between two

successive sensors at the angle θ = 0◦.

We consider fixed beamformers with small values of δ, like in

superdirective [5], [6] or differential beamforming [1], [9], where the

main lobe is at the angle θ = 0◦ (endfire direction) and the desired

signal propagates from the same angle. Then, our goal is to design

linear array beamformers, which are able to achieve supergains at

the endfire with a better control on white noise amplification. For

that, a complex weight, H∗
m(ω), m = 1, 2, . . . ,M , is applied at the

output of each microphone, where the superscript ∗ denotes complex

conjugation. The weighted outputs are then summed together to form

the beamformer output. Putting all the gains together in a vector of

length M , we get

h(ω) =
[

H1(ω) H2(ω) · · · HM (ω)
]T

. (2)



The mth microphone signal is given by

Ym(ω) = e−(m− 1)ωτ0X(ω) + Vm(ω), m = 1, 2, . . . ,M, (3)

where X(ω) is the desired signal and Vm(ω) is the additive noise at

the mth microphone. In a vector form, (3) becomes

y(ω) =
[

Y1(ω) Y2(ω) · · · YM (ω)
]T

= x(ω) + v(ω) = d(ω)X(ω) + v(ω), (4)

where x(ω) = d(ω)X(ω), d(ω) = d(ω, 0◦) is the steering vector at

θ = 0◦ (direction of the source), and the noise signal vector, v(ω),
is defined similarly to y(ω).

The beamformer output is then [2]

Z(ω) =
M
∑

m=1

H∗

m(ω)Ym(ω) = h
H(ω)y(ω)

= h(ω)d(ω)X(ω) + h
H(ω)v(ω), (5)

where Z(ω) is supposed to be the estimate of the desired signal,

X(ω), and the superscript H is the conjugate-transpose operator. We

constrain the solution to be distortionless, i.e.,

h
H(ω)d(ω) = 1. (6)

If we take microphone 1 as the reference, using the definitions for

input signal-to-noise ratio (SNR) and output SNR [8], the gain in

SNR is defined as

G[h(ω)] = oSNR[h(ω)]

iSNR(ω)
=

∣

∣hH(ω)d(ω)
∣

∣

2

hH(ω)Γv(ω)h(ω)
. (7)

where Γv(ω) =
Φv(ω)

φV1(ω)
and Φv(ω) = E

[

v(ω)vH(ω)
]

are the

pseudo-coherence and correlation matrices of v(ω), respectively, and

φV1(ω) = E[|V1(ω)|2] is the variance of V1(ω).
In the field of superdirective beamformers, we are usually inter-

ested in two types of noise.

• The temporally and spatially white noise with the same variance

at all microphones1 . In this case, Γv(ω) = IM , where IM is the

M×M identity matrix. Therefore, the white noise gain (WNG)

is defined as

W[h(ω)] =

∣

∣hH(ω)d(ω)
∣

∣

2

hH(ω)h(ω)
. (8)

We can easily deduce that the maximum WNG is Wmax = M
which is frequency independent. The white noise amplification

is the most serious problem with superdirective beamformers,

which prevents them from being widely deployed in practice.

• The diffuse noise2, where

[Γv(ω)]ij = [Γd(ω)]ij =
sin [ω(j − i)τ0]

ω(j − i)τ0
= sinc [ω(j − i)τ0] . (9)

In this scenario, the gain in SNR is called the directivity factor

(DF) and it is given by

D[h(ω)] =

∣

∣hH(ω)d(ω)
∣

∣

2

hH(ω)Γd(ω)h(ω)
. (10)

It is easy to verify that the maximum (frequency dependent) DF

is Dmax(ω) = dH(ω)Γ−1
d (ω)d(ω). We refer to Dmax(ω) as

supergain when it is close to M2, which can be achieved with

1This noise models appropriately the sensor noise.
2This situation corresponds to the spherically isotropic noise field.

a superdirective beamformer but at the expense of white noise

amplification.

Then, one of the most important issues in practice is how to

compromise between W[h(ω)] and D[h(ω)]. Ideally, we would like

D[h(ω)] to be as large as possible with W[h(ω)] ≥ 1.

III. CONVENTIONAL BEAMFORMERS

In this section, we review two conventional fixed beamformers;

one that maximizes the WNG and another that maximizes the DF.

Afterwards we relate to a regularized version of the second approach.

The most well-known beamformer is the delay-and-sum (DS)

[4], which is derived by maximizing the WNG (8) subject to the

distortionless constraint (6). We get

hDS(ω) =
d(ω)

dH(ω)d(ω)
=

d(ω)

M
. (11)

Therefore, with this filter, the WNG and the DF are, respectively,

W[hDS(ω)] = M = Wmax (12)

and

D[hDS(ω)] =
M2

dH(ω)Γd(ω)d(ω)
≥ 1. (13)

This beamformer maximizes the WNG and never amplifies the diffuse

noise since D [hDS(ω)] ≥ 1. However, in reverberant and noisy envi-

ronments, our aim is to obtain high DF for good speech enhancement

(i.e., dereverberation and noise reduction). This unfortunately does

not happen with the DS beamformer, that malfunctions in reverberant

rooms, even with a large number of microphones.

The second important beamformer is obtained by maximizing the

DF (10) subject to the distortionless constraint (6). We get the well-

known superdirective beamformer [5]:

hS(ω) =
Γ−1

d (ω)d(ω)

dH(ω)Γ−1
d (ω)d(ω)

. (14)

Its WNG and DF are, respectively,

W[hS(ω)] =

[

dH(ω)Γ−1
d (ω)d(ω)

]2

dH(ω)Γ−2
d (ω)d(ω)

(15)

and

D[hS(ω)] = d
H(ω)Γ−1

d (ω)d(ω) = Dmax(ω). (16)

While the DS beamformer has maximal and constant WNG re-

sponse, but suffers from low DF, the superdirective beamformer, on

the other hand, maximizes the DF but has a negative WNG.

We can express the WNG as

W[hS(ω)] = Wmax cos
2 ϕ(ω), (17)

where

cosϕ(ω) = cos
[

d(ω),Γ−1
d (ω)d(ω)

]

=
dH(ω)Γ−1

d (ω)d(ω)
√

dH(ω)d(ω)
√

dH(ω)Γ−2
d (ω)d(ω)

(18)

is the cosine of the angle between the two vectors d(ω) and

Γ−1
d (ω)d(ω), with 0 ≤ cos2 ϕ(ω) ≤ 1.

At low frequencies, cos2 ϕ(ω) can be very close to 0. As a

result, W [hS(ω)] can be smaller than 1, which implies white noise

amplification. While the superdirective beamformer attains maximum



directivity factor, which is good for speech enhancement in reverber-

ant rooms, it amplifies the white noise to intolerable levels, especially

at low frequencies.

Since (14) is sensitive to the spatially white noise, Cox et al. [5],

[6] proposed to maximize the DF subject to a constraint on the WNG.

Under the distortionless constraint (6), the obtained optimal solution

is [5], [6]

hS,ǫ(ω) =
[Γd(ω) + ǫIM ]−1

d(ω)

dH(ω) [Γd(ω) + ǫIM ]−1
d(ω)

, (19)

where ǫ ≥ 0 is a Lagrange multiplier. This is a regularized version

of (14), where ǫ can be seen as the regularization parameter. This

parameter tries to find a compromise between a supergain and white

noise amplification. A small ǫ leads to a large DF and a low WNG,

while a large ǫ gives a low DF and a large WNG. Two interesting

cases of (19) are hS,0(ω) = hS(ω) and hS,∞(ω) = hDS(ω).
We can express (19) as an ǫ-regularized superdirective beamformer:

hS,ǫ(ω) =
Γ−1

ǫ (ω)d(ω)

dH(ω)Γ−1
ǫ (ω)d(ω)

, (20)

where Γǫ(ω) = Γd(ω)+ǫIM is a regularized version of the pseudo-

coherence matrix of the diffuse noise. The corresponding WNG and

DF for this beamformer are, respectively,

W[hS,ǫ(ω)] =

[

dH(ω)Γ−1
ǫ (ω)d(ω)

]2

dH(ω)Γ−2
ǫ (ω)d(ω)

(21)

and

D[hS,ǫ(ω)] =

[

dH(ω)Γ−1
ǫ (ω)d(ω)

]2

dH(ω)Γ−1
ǫ (ω)Γd(ω)Γ

−1
ǫ (ω)d(ω)

. (22)

Similarly to (17), we can express the WNG (21) as

W[hS,ǫ(ω)] = Wmax cos
2 ϕǫ(ω), (23)

where

cosϕǫ(ω) = cos
[

d(ω),Γ−1
ǫ (ω)d(ω)

]

=
dH(ω)Γ−1

ǫ (ω)d(ω)
√

dH(ω)d(ω)
√

dH(ω)Γ−2
ǫ (ω)d(ω)

(24)

is the cosine of the angle between the two vectors d(ω) and

Γ−1
ǫ (ω)d(ω), with 0 ≤ cos2 ϕǫ(ω) ≤ 1. For small ǫ, cosϕǫ(ω)

would be similar to cosϕ(ω). Large ǫ would enlarge W[hS,ǫ(ω)],
so that cos2 ϕǫ(ω) would be closer to 1.

While hS,ǫ(ω) has some control on white noise amplification, it

is certainly not easy to find a closed-form expression for ǫ given a

desired value of the WNG.

IV. PROPOSED BEAMFORMER

A. Derivation

As we saw, the DS and the regularized superdirective beamformers

achieve maximum WNG and high DF, respectively. Therefore, we

suggest to linearly combine the aforementioned beamformers into

the following beamformer:

hα,β,ǫ(ω) = α(ω)hS,ǫ(ω) + β(ω)hDS(ω) (25)

= α(ω)
Γ−1

ǫ (ω)d(ω)

dH(ω)Γ−1
ǫ (ω)d(ω)

+ β(ω)
d(ω)

M

=
[

α(ω)IM + β(ω)hDS(ω)d
H(ω)

]

hS,ǫ

=
[

β(ω)IM + α(ω)hS,ǫ(ω)d
H(ω)

]

hDS,

where α(ω) and β(ω) are two real numbers with

α(ω) + β(ω) = 1. (26)

It is easy to verify that with the condition (26), this beamformer (25)

is distortionless, i.e., hH
α,β,ǫ(ω)d(ω) = 1. This beamformer controls

the regularization with ǫ, and the DS or regularized superdirective

influence with α(ω) and β(ω).
It is not hard to show that the WNG of hα,β,ǫ(ω) is

W[hα,β,ǫ(ω)] =
W[hDS(ω)]W[hS,ǫ(ω)]

α2(ω)W[hDS(ω)] + [1− α2(ω)]W[hS,ǫ(ω)]

=
Wmax cos

2 ϕǫ(ω)

α2(ω) + [1− α2(ω)] cos2 ϕǫ(ω)
≤ Wmax, (27)

which depends on the WNGs of the DS and regularized superdirective

beamformers. We see that for α(ω) = 0 [in this case β(ω) = 1], we

have W[h0,1,ǫ(ω)] = W[hDS(ω)], and for α(ω) = 1 [so β(ω) = 0],

we have W[h1,0,ǫ(ω)] = W[hS,ǫ(ω)]. Also, we have

W[hα,β,ǫ(ω)] ≥ W [hS,ǫ(ω)] , ∀α2(ω) ≤ 1, (28)

suggesting that we should always choose −1 ≤ α(ω) ≤ 1.

If we define Dmax,ǫ(ω) = dH(ω)Γ−1
ǫ (ω)d(ω), it can be verified

that the inverse DF corresponding to hα,β,ǫ(ω) is

D−1[hα,β,ǫ(ω)] = α2(ω)D−1[hS,ǫ(ω)] +

2α(ω)β(ω)
d
H(ω)Γd(ω)Γ−1

ǫ (ω)d(ω)

M·dH(ω)Γ−1
ǫ (ω)d(ω)

+ β2(ω)D−1[hDS(ω)]

= α2(ω)D−1[hS,ǫ(ω)] + 2α(ω)β(ω)
[

D−1
max,ǫ(ω)− ǫ 1

M

]

+β2(ω)D−1[hDS(ω)], (29)

which depends on the DFs of the DS and regularized superdirective

beamformers. We observe that for β(ω) = 0, [i.e., α(ω) = 1] we

have D[h1,0,ǫ(ω)] = D[hS,ǫ(ω)], and for β(ω) = 1 [so α(ω) = 0],

we have D[h0,1,ǫ(ω)] = D[hDS(ω)]. These results are consistent

with the ones obtained for the WNGs. Also, we have

D[hα,β,ǫ(ω)] ≤ D[hS,ǫ(ω)] (30)

D[hα,β,ǫ(ω)] ≥ D[hDS(ω)], ∀β2(ω) ≤ 1, (31)

suggesting that we should always take −1 ≤ β(ω) ≤ 1. From all of

the above we deduce that 0 ≤ α(ω), β(ω) ≤ 1.
Examples of the WNG and the DF of hα,β,ǫ(ω) beamformer

are described in Fig. 1(a)-(b). Our goal is to design a beamformer

with adequate WNG level and relatively high DF. When we design

the filter parameters, first we set the regularization factor ǫ. It will

determine the maximal DF D[hS,ǫ(ω)], and the minimal WNG

W[hS,ǫ(ω)]. Setting the parameters α(ω) and β(ω) is depended on

what we desire. Next, we discuss two interesting approaches.

In the first approach, we would like to find the value of α(ω) in

such a way that W[hα,β,ǫ(ω)] = W0(ω), where W0(ω) is a user-

determined frequency-dependent WNG response, with W[hS,ǫ(ω)] <
W0(ω) < M, ∀ω. Using (27), we find that

α2(ω) =

(

Wmax

W0(ω)
− 1

)

cos2 ϕǫ(ω)

1− cos2 ϕǫ(ω)
(32)

from which we deduce two possible solutions for α(ω):

α±(ω) = ±
√

Wmax

W0(ω)
− 1 |cotϕǫ(ω)| . (33)

The corresponding values for β(ω) are

β1(ω) = 1− α+(ω), β2(ω) = 1− α−(ω). (34)



From the two pairs of solutions {α+(ω), β1(ω)} and

{α−(ω), β2(ω)}, we obviously choose the first one; therefore

the obtained beamformer is

hα+,β1,ǫ(ω) = α+(ω)hS,ǫ(ω) + β1(ω)hDS(ω). (35)

In the second approach, we would like to design the parameters

in such a way that D[hα,β,ǫ(ω)] = D0(ω), where D0(ω) is a

desired frequency-dependent DF with D[hDS(ω)] < D0(ω) <
D[hS,ǫ(ω)], ∀ω. We can express (29) as a second degree polynomial

of β(ω):

β2(ω)
{

D−1[hDS(ω)] +D−1[hS,ǫ(ω)]− 2
[

D−1
max,ǫ(ω)− ǫ 1

M

]}

+2β(ω)
{[

D−1
max,ǫ(ω)− ǫ 1

M

]

−D−1[hS,ǫ(ω)]
}

+D−1[hS,ǫ(ω)]−D−1
0 (ω) = 0, (36)

with two possible solutions for β(ω), marked by β±(ω). Therefore,

the corresponding values for α(ω) are

α1(ω) = 1− β+(ω), α2(ω) = 1− β−(ω), (37)

from which we take the positive one, and obtain the user-determined

DF beamformer:

hα1,β+,ǫ(ω) = α1(ω)hS,ǫ(ω) + β+(ω)hDS(ω). (38)

B. Justification

First, we can rewrite the robust superdirective beamformer (19) as

hS,ǫ(ω) = Sǫ(ω)[Γd(ω) + ǫIM ]−1
d(ω), (39)

where

Sǫ(ω) =
1

dH(ω)[Γd(ω) + ǫIM ]−1d(ω)
(40)

is a scaling factor which ensures that hS,ǫ(ω) is distortionless.

Therefore, Sǫ(ω) has no effect on the robustness of the filter and

only the term ǫIM in [Γd(ω) + ǫIM ]−1d(ω) has, since it is the

linear system that we want to solve.

Let us assume that α(ω) 6= 0; Using Woodbury identity [12] we

can express the proposed beamformer as

hα,β,ǫ(ω) =
[

α(ω)IM + β(ω)hDS(ω)d
H(ω)

]

hS,ǫ(ω)

= α(ω)
[

IM − β(ω)d(ω)dH (ω)

dH(ω)d(w)

]−1
Γ
−1
ǫ (ω)d(ω)

dH(ω)Γ−1
ǫ (ω)d(ω)

= Sα(ω)
[

Γd(ω)− β(ω)Γǫ(ω)d(ω)dH(ω)

dH (ω)d(w)

]−1

d(ω), (41)

where

Sα(ω) =
α(ω)

dH(ω)Γ−1
ǫ (ω)d(ω)

(42)

is a scaling factor which ensures that hα,β,ǫ(ω) is distortionless. We

can say that (41) is also a regularized superdirective beamformer with

a rank-one complex matrix.

Let us assume that β(ω) 6= 0. In this case, the proposed beam-

former can be rewritten as

hα,β,ǫ(ω) =
[

β(ω)IM + α(ω)hS,ǫ(ω)d
H(ω)

]

hDS(ω)

= β(ω)
[

IM − α(ω)
Γ
−1
ǫ (ω)d(ω)dH(ω)

dH(ω)Γ−1
ǫ (ω)d(w)

]−1
d(ω)

dH(ω)d(ω)

= Sβ(ω)
[

IM − α(ω)
Γ
−1
ǫ (ω)d(ω)dH(ω)

dH (ω)Γ−1
ǫ (ω)d(w)

]−1

d(ω), (43)

where

Sβ(ω) =
β(ω)

dH(ω)d(ω)
(44)

is a scaling factor which ensures that hα,β,ǫ(ω) is distortionless.

Again, we can consider (43) as a regularized form of the superdirec-

tive beamformer.

V. SIMULATIONS

In general, both the filter-design parameters and the physical

properties of the microphone array determine the filter response. First,

the regularization factor ǫ controls the range of the WNG and DF

we can get, as noted in (28) and (30). To embody this, we added

the response of hS,ǫ(ω) to the illustrated simulations. Clearly, the

array physical properties, such as the number of elements M and the

microphone spacing δ, affect the response as well [5], [8].

First, we simulated the user-determined WNG beamformer

hα+,β1,ǫ(ω) (35). In Fig. 1(c)-(d), we show an example of the WNG

and the DF response of such beamformer. The determined WNG

example of W0(ω) = −8 + 5 sin( 1
2π

ω) dB provides a tolerable

white noise amplification, above the minimal WNG of W[hS,ǫ(ω)],
together with a satisfying DF, between the DF of the superdirective

beamformer and the DF of the regularized superdirective beamformer.

Of course, any desired WNG can be set, within the allowed range.

Next, we simulated the user-determined DF beamformer

hα1,β+,ǫ(ω) by solving (36) for a linear equation example: D0(ω) =
4+ 1

2π
· 10−3ω dB. The corresponding WNG and DF responses are

illustrated in Fig. 1(e)-(f). We observe that the received WNG is

between the WNG levels of the regularized superdirective and the

DS beamformers, as expected. Likewise, the determined D0(ω) is

limited within the range of D[hDS(ω)] < D0(ω) < D[hS,ǫ(ω)], ∀ω.

Finally, following [5], to demonstrate the influence of the filter

parameters on the WNG–DF tradeoff, we show in Fig. 2 the DF

curve vs. WNG for increasing α(ω), for different ǫ values. The

parameter α(ω) = α, ∀ω, varies from 0 to 1 along the curves,

where β(ω) = 1 − α correspondingly. This example indicates of

a monotonic relationship between α (given a specific regularization

factor ǫ) and the gains of the beamformer. Increase of the WNG

from its minimal value W[hS,ǫ(ω)] at α = 0 to its maximum, at

α = 1, causes monotonic decrease in the DF from its maximal value

(of D[hS,ǫ(ω)]) to the low DF of the DS beamformer. One can see

that setting different regularization factor ǫ changes the WNG–DF

tradeoff vastly, hence there is a major importance of choosing an

appropriate value for this parameter as well.

VI. CONCLUSION

We have extended our previously proposed approach [8] to ro-

bust regularized beamforming by using a linear combination of a

regularized version of the superdirective beamformer and the DS

beamformer. The proposed solution allows the user to adjust each of

these beamformers influence, by setting the beamformer parameters

α(ω) and β(ω), in favor of the desired application. Using the

proposed beamformer enables us to achieve any user-determined

WNG or DF (such as the sine and linear equation shown here),

within a wide allowed range. We examined the WNG–DF tradeoff,

and analyzed the influence of the filter parameters α, β and ǫ on the

WNG–DF relationship.

The presented approach opens a window to a wide family of

combinations of known beamformers, with management of the beam-

former frequency response. By setting the filter parameters, the user

determines the weight of each factor, hence controlling the behavior

of the beamformer WNG and DF.
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Fig. 1: Examples of the array gain of each beamformer, with M = 10 microphones, δ = 1 cm, and ǫ = 1 · 10−4. The top figures illustrate

the proposed beamformer WNG (solid line) versus frequency. As a reference, Wmax (dashed line), W[hS(ω)] (dotted line), and W[hS,ǫ(ω)]
(dot-dash-dot line) are plotted. The bottom figures illustrate the proposed beamformer DF (solid line). As a reference, Dmax(ω) (dashed

line), D[hDS(ω)] (dotted line), and D[hS,ǫ(ω)] (dot-dash-dot line) are plotted. (a)-(b) WNG and DF of hα,β,ǫ(ω), with α = β = 0.5.

(c)-(d) WNG and DF of hα+,β1,ǫ(ω) (35). The desired WNG is set to W0(ω) = −8+5 sin( 1
2π

ω) dB. (e)-(f) WNG and DF of hα1,β+,ǫ(ω)
as a solution of (36). The desired DF is set to D0(ω) = 4 + 1

2π
· 10−3 · ω dB.
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Fig. 2: The DF curve versus WNG, of hα,β,ǫ(ω) for increasing α, for

different values of ǫ: ǫ = 1 · 10−5 (solid line), ǫ = 1 · 10−4 (dashed

line), ǫ = 1 ·10−3 (dotted line), and ǫ = 5 ·10−3 (dot-dash-dot line).

M = 10 microphones, δ = 1 cm, and α is monotonically increased

from 0 to 1 (with β = 1− α correspondingly).
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