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Abstract—In this paper we introduce a novel anomaly detection
method in sonar images based on noncausal autoregressive-
autoregressive conditional heteroscedasticity (AR-ARCH) model.
The background of the sonar image in the wavelet domain is
modeled by a noncausal AR-ARCH model. Matched subspace
detector (MFD) is used for detecting the anomaly in the image.
The proposed method is computationally efficient and is robust
to the orientation variation of the image, compared to competing
method.

Index Terms—Noncausality, AR-ARCH, Anomaly detection,
Sonar images.

I. INTRODUCTION

Image anomaly detection is the process of extracting a
small number of clustered pixels, which are different from
the background. The type of image and the characteristics of
anomalies are application dependent. Among the applications
one can name detection of targets in images, detection of
defects in silicon wafers, detection of mine features in side-
scan sonar and detection of tumors in medical imaging. Target
detection in radar and sonar imagery is a challenging problem
due to the large variability in background clutter and in object
appearance. The detection of sea-mines, for example, involves
addressing the varying shape of the ocean surface and its
vegetation [1]. In most cases, lethal targets must be detected
with nearly 100% reliability. False detections may not be
disastrous but might slow down the demining process.

Anomaly detection algorithms generally consist of some or
all of the following stages: selection of an appropriate feature
space, selection of a statistical model for the selected feature
space and selection of a detection algorithm.

A proper selection of a feature space, which allows distinc-
tion of anomalies from the clutter, is an important part of an
anomaly detection algorithm. Feature space selection methods
can be classified into two major groups: Image pixel feature
space and transform feature space. In image pixel feature
space, the feature space is created based on the image pixels
themselves. Kazantsev et al. [2] introduced a feature space
based on two circular concentric windows W7 and W5 with
radii R; and R», respectively, R; < Rs. A similar approach
is taken by Schweizer and Moura [3]. In their approach two
concentric rectangles serve as the moving window. For further
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discussion on this kind of feature space selection see [2] and
[3]. In transform feature space, the feature space is created
based on the transformed image. There exist two common
transforms which are mainly used for anomaly detection:
Karhunen-Loeve transform (KLT) and discrete wavelet trans-
form (DWT). The KLT is used to transform an n dimensional
vector space into an m dimensional vector space, where
m < n, such that the mean-square magnitude of the error
resulting from representing the n dimensional vector using
only m dimensions is minimized. The KLT is also used to
remove correlation between features. DWT is recently used
in variety of applications in image signal processing. Among
them, the most important one is image compression and coding
[4]. The theory of two dimensional DWT is well developed
and can be found in classic textbooks, (see [4]).

Once the feature space is chosen, one must find an appro-
priate statistical model to describe the natural clutter in the
selected feature space domain. Popular models for modeling
the natural clutter are gaussian or extensions of gaussian,
selected because of their mathematical tractability. Ashton [5]
performed subpixel anomaly detection in multispectral infrared
imagery using gaussian distribution for clutter. Stein et al.
[6] used a gaussian mixture model (GMM) for modeling
hyperspectral imagery. Other extensions such as linear mixing
model (LMM) and Gauss Markov random field (GMRF) are
used by several authors for modeling the clutter. See [7] for
a good review of multi-resolution Markov models for signal
and image processing. Recently, Noiboar and Cohen [8] used
causal GARCH model for anomaly detection in sonar images.
The causality assumption incorporated into the GARCH model
in [8], is unnatural for images. Developing a non-causal
statistical model characterized by a heavy tailed distribution
and innovation clustering leads to an improvement in clutter
modeling by reducing the dependency on image orientation.
As a result, such a model, may reduce the false alarm rate for
a given detection rate.

By anomaly detection we mean classifying a region of
an image as anomaly or background with the assumption of
low-probability anomalies. There are several anomaly detector
among them one can name single hypothesis test (SHT)
[9], matched filter detector (MFD) and its adaptive version
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[10], matched subspace detector (MSD) [11] and its adaptive
version [12].

In this paper, we present a new statistical model to describe
the natural clutter in DWT domain. This model generalizes
the method presented in [8] by using a noncausal ARCH
instead of GARCH model. The rest of the paper is organized
as follows. In section 2, we introduce the noncausal two-
dimensional AR-GARCH model and our anomaly detector
which is based on two dimensional AR-GARCH modeling
of the clutter. In section 3, we evaluate the performance of the
proposed algorithms using simulations.

II. NONCAUSAL AR-ARCH MODELING OF THE IMAGES
IN WAVELET DOMAIN AND ANOMALY DETECTION

In this section we introduce a noncausal AR-ARCH model
for images in the wavelet domain and anomaly detection
procedure. This model is to some extent similar to the model
used in [8] with a major difference. The model used in [8]
is a causal model whereas our proposed model is noncausal.
Let z(t1,t2) be the original image. Using two dimensional
wavelet transform introduced in [8], we get a set of 2L + 1
images where L is the depth of the wavelet transform. We
utilize an undecimated wavelet transform. The undecimated
wavelet transform has the property of translation invariance,
which is important in the context of anomaly detection. Let
ye(ti,t2) ; 1 < <2L+1 be the {-th image in the wavelet
domain. We assume that the background image is a noncausal
AR-ARCH process defined as follows
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where bfj are parameters of the AR part, Vi < 0, 19570 =0,
r and s are the order of AR model in horizontal and vertical
directions, ¢y and a;; are the parameters of the ARCH part,
Vi < 0, a;o = 0, p and ¢ are the order of the ARCH
model in horizontal and vertical directions and e,(¢1,t2) are
zero mean independent identically distributed (IID) random
variables with identity covariance matrix. We have defined
our two dimensional noncausal AR-ARCH model based on
the definition of two dimensional noncausal AR model [13]
extensively used in image signal processing.

Now we introduce a heuristic method for parameter esti-
mation of the two dimensional noncausal AR-ARCH model.
Noting that the ARCH process is white, the parameters of the

AR part can be easily estimated with the method proposed in
[13]. Let this estimate of the parameters of the AR part be
denoted by l}fj Using this estimate of the parameters and (1)
the residual of the AR model (i.e, x¢(t1,%2)) can be easily

estimated as follows
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Using this estimate of the residuals, the parameters of the
ARCH part can be estimated using the modified two stage least
squares (MTSLS) method. This method is a generalization of
TSLS method [14] to the noncausal case. Substituting this
estimate of the parameters and estimate of the residuals (i.e.
#%(t1,t2)) in (2), the estimate of the conditional variance is
obtained as follows
P q
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where ¢ and dﬁ ; are the estimates of the parameters obtained
by MTSLS method.

Using this estimate of the conditional variance, the anomaly
detector is obtained as follows. For each pixel in each layer
y*(t1,t2) we create a column vector &°(t1, t2) by row stacking
an image chip of size L{ x L centered around pixel (¢1,t5) in
the (-th layer. Assume that there exists no interference and let
¥ (t1,t2) be a vector locating the anomaly within its subspace
< Hy >= span{H;}. We define two hypotheses, Hy and
H,, which respectively represent absence and presence of an
anomaly as follows:

Hy : @%(t1,t2) = oe(t1, ta)ee(ty, t2) ®)
Hy & (ty, ta) = HQ (t1, t2) + ou(ty, t2)ee(tr, t2) (6)
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Under the two hypotheses the sample conditional distribution
of @‘(t1,t2) is gaussian with identical covariance matrices
with different means, i.e.

HO : :ﬁg(tlth) ~ N(O Efl t2) (8)
Hy:@'(ty,ta) ~ N(HY(t,12),27, ) 9

where 3¢ \.t, 1s @ diagonal matrix whose dlagonal is a vector
obtained by row stacking of a chip of o3 (t1,t2) with size
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L% x L% centered around pixel (¢1,t3) in the (-th layer. The
log-likelihood ratio can be computed as follows [11]

1. T _1
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(10)
where
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Since the true value of the conditional variance (afl_’tz) is not
available, by the generalized likelihood ratio test, it can be
replaced by its estimate (&fl,tz) which is given by (4). Our
final detector is given by comparing the generalized likelihood
ratio with a predefined threshold, i.e,
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where 7) is the threshold level and flfl,tz is a diagonal matrix
whose diagonal is a vector obtained by row stacking of a chip
of 62(t1,ts) with size L{ x L centered around pixel (¢1,t2)
in the /-th layer. The anomaly subspace for each layer (H*)
is estimated from a database by exactly the same approach
utilized in [8]. The algorithm is summarized in Table 1.

TABLE I
ANOMALY DETECTION ALGORITHM USING NONCAUSAL AR-ARCH
MODEL

(1) Transform the image to wavelet domain.

(2) Find the anomaly subspace H’ for each layer.

(3) For each layer estimate the AR parameters and
the residuals (i.e, #¢(t1,t2)) using (3).

(4) For each layer estimate the ARCH parameters and the
conditional variance (i.e. 5*(t1,t2)) using (4).

(5) Find the generalized likelihood ratio using (12).

(6) Compare the generalized likelihood ratio to a threshold.

ITII. SIMULATION RESULTS

In this section we evaluate the performance of our anomaly
detection using simulations. We use real side-scan sonar
images. The side-scan sonar images presented in these simu-
lations are taken from the Sonar-5 database collected by the
Naval Surface Warfare Center Coastal System Station (Panama
City, FL). The images are 8-bit gray scale. An elongated sea
mine is characterized by a bright line (the highlight or echo),
corresponding to the scattering response of the mine to the
acoustic insonification, and a shadow behind it, corresponding
to the blocking of sonar waves by the mine.

The result for a specific image with two different orienta-
tions is depicted in Fig 1. In this simulation we used AR-
ARCH model with the following orders : p = 1,¢q = 1,r =
3,s = 3. The size of the original signal is 528 x 512 and both

L% and L% are set to 16. The depth of the wavelet transform
is equal to 4 and we used Harr wavelet transform. Other
simulations show that the selection another mother wavelet
does not affect the overall performance of the detector. In Fig
1 each row consists of the original picture (left), the result of
the proposed detection algorithm (middle) and the result of the
detection algorithm presented in [8] (right). From this figure it
is apparent that the orientation of the image dose not affect the
performance of the proposed method while the performance
of the method presented in [8] depends on the orientation. It is
worth mentioning that the computational load of the proposed
method is much lower than the method presented in [8] so it
can be used in real time applications.

IV. CONCLUSION

We have presented an anomaly detection algorithm based
on AR-ARCH modeling of the background. The detection
algorithm is Matched Subspace Detector and the clutter model
is noncausal AR-ARCH model. This model is an extension of
the model used in [8] for anomaly detection. The advantage of
the proposed over causal GARCH one is its low computational
load and its invariability to the orientation of the image.
Simulation results demonstrate the improved performance of
the proposed method.
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