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ABSTRACT

Recently, a relative transfer function (RTF) identification

method based on the convolutive transfer function (CTF)

approximation was developed. This method is adapted to

speech sources in reverberant environments and exploits

the non-stationarity and presence probability of the speech

signal. In this paper, we present experimental results that

demonstrate the advantages and robustness of the proposed

method. Specifically, we show the robustness of this method

to the environment and to a variety of recorded noise signals.

Index Terms— Acoustic noise measurement, adaptive

signal processing, array signal processing, speech enhance-

ment, system identification.

1. INTRODUCTION

One of the main challenges in identifying the relative trans-

fer function (RTF) is its length, as the duration of the RTF

in reverberant environments may reach several thousand taps.

Identification of such long filters is computationally demand-

ing and requires a large amount of observations. Therefore,

a common approach is to use the multiplicative transfer func-

tion (MTF) approximation which enables to replace a linear

convolution in the time domain with a scalar multiplication in

the short time Fourier transform (STFT) domain [1] [2]. Un-

fortunately, this approximation becomes more accurate when

the length of a time frame increases, relative to the length of

the impulse response [3]. However, long time frames may

increase the estimation variance, increase the computational

complexity and restrict the ability to track changes in the RTF.

Recently, an RTF identification method based on the con-

volutive transfer function (CTF) approximation was presented

[4]. This approximation enables representation of long im-

pulse responses in the STFT domain using short time frames.

Based on the analysis of the system identification in the STFT

domain with cross-band filtering [5], it was shown that the

CTF approximation becomes more accurate than the MTF ap-

proximation, as the signal to noise ratio (SNR) increases. In
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addition, this method exploits the non-stationarity and pres-

ence probability of the speech signal. In this paper, we show

experimental results demonstrating the advantages of the RTF

estimation method based on the CTF model. In particular, we

show the robustness of this method to the environment and to

a variety of recorded noise signals.

This paper is organized as follows. In Section 2, we for-

mulate the RTF identification problem in the STFT domain.

In Section 3, we review the RTF identification approach suit-

able for speech sources in reverberant environments. Finally,

in Section 4 we present experimental results that demonstrate

the advantage of the RTF identification method under the CTF

approximation.

2. PROBLEM FORMULATION

Let s(n) denote a non-stationary speech source signal, and

let u(n) and w(n) denote additive stationary noise signals,

that are uncorrelated with the speech source. The signals are

received by primary and reference microphones:

x(n) = s(n) + u(n) (1)

y(n) = h(n) ∗ s(n) + w(n) (2)

where h(n) represents the coupling of the speech signal to

the reference microphone, and * represents convolution. In

this work, our goal is to identify the response h(n). Usually

s(n) is not a clean speech source signal but a reverberated

version, s(n) = h1(n) ∗ s̄(n), where s̄(n) is the clean speech

signal and h1(n) is the room impulse response of the primary

sensor to the speech source. Accordingly, h2(n) = h(n) ∗
h1(n) is the room impulse response of the reference sensor

to the speech source, and h(n) represents the relative impulse

response between the microphones with respect to the speech

source.

An equivalent problem is to have a linear time invariant

(LTI) system, with an input x(n), output y(n) and additive

noise v(n), written as

y(n) = h(n) ∗ x(n) + v(n) (3)

v(n) = w(n) − h(n) ∗ u(n). (4)
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The formulation in (3) cannot be considered as an ordinary

system identification problem, since (4) indicates that v(n)
depends on both x(n) and h(n). Thus, applying system iden-

tification method to an RTF identification problem leads to a

biased estimation.

Dividing the observation interval into Nx overlapping

time frames of length N with framing step L, we obtain

according to [5] that a filter convolution in the time domain

is represented as a sum of N cross-band convolutions in the

STFT domain. Accordingly, (3) and (4) can be written in the

STFT domain as

yp,k =

N−1
∑

k′=0

∑

p′

xp−p′,k′hp′,k′,k + vp,k (5)

vp,k = wp,k −
N−1
∑

k′=0

∑

p′

up−p′,k′hp′,k′,k (6)

where p is the time frame index, k and k′ are the frequency

sub-band indices and hp,k′,k is the cross-band filter coeffi-

cients between frequency band k′ and k of length Nh. The

length of yp,k is given by Ny = Nx +Nh − 1.

In order to simplify the analysis, we consider in (5) and

(6) only band-to-band filters (i.e. k = k′). Then, (5) and (6)

reduce to

yp,k =
∑

p′

xp−p′,khp′,k,k + vp,k (7)

vp,k = wp,k −
∑

p′

up−p′,khp′,k,k. (8)

In (7) and (8) we have approximated the convolution in the

time domain as a convolution between the STFT samples of

the input signal and the corresponding band to band filter. Let

hk′,k denote the cross-band filter from frequency band k′ to

frequency band k:

hk′,k = [h0,k′,k h1,k′,k · · · hNh−1,k′,k]T . (9)

Note that due to the non causality of the cross-band filter

hp,k′,k, the time index p should have ranged differently ac-

cording to the number of non causal coefficients of hp,k′,k.

However, we assume that an artificial delay has been intro-

duced into the system output signal y(n) in order to compen-

sate for those non causal coefficients. Let Xk be an Ny ×Nh

Toeplitz matrix constructed from the STFT coefficients of the

input signal x in the kth sub-band. Similarly, let Uk be an

Ny × Nh Toeplitz matrix constructed from the STFT coeffi-

cients of the noise signal u. Then, we can write (7) and (8) in

a matrix form as

yk = Xkhk,k + vk (10)

vk = wk − Ukhk,k (11)

where

yk =
[

y0,k y1,k · · · yNy−1,k

]T
(12)

and vk and wk are defined similarly.

3. RTF IDENTIFICATION METHOD

By taking expectation of the cross multiplication of the two

observed signals y and x in the STFT domain, we obtain from

(10)

Φyx(k) = Ψxx(k)hk,k + Φvx(k) (13)

where Ψxx(k) is an Ny ×Nh matrix and its (p, l)th term is

[Ψxx(k)]p,l = E
{

xp−l,kx
∗

p,k

}

, ψxx (p, l, k) (14)

and Φyx(k) and Φvx(k) are Ny × 1 vectors, given as

Φyx(k) =
[

φyx(0, k) · · · φyx(Ny − 1, k)
]T

(15)

Φvx(k) =
[

φvx(0, k) · · · φvx(Ny − 1, k)
]T

(16)

where E{·} denotes mathematical expectation, φyx(p, k)
denotes the cross PSD between the signals y(n) and x(n),
φvx(p, k) denotes the cross PSD between the signals v(n)
and x(n) and ψxx(p, l, k) denotes the cross PSD between the

signal x(n) and its delayed version x′(n) , x(n − lL), all

at time frame p and frequency k. Since the speech signal

s(n) is uncorrelated with the noise signal u(n), by taking

mathematical expectation of the cross multiplication of v and

x in the STFT domain, we get from (11):

Φvx(k) = Φwu(k) − Ψuu(k)hk,k (17)

where Φwu(k) is an Ny × 1 vector, given as

Φwu(k) =
[

φwu(k) · · · φwu(k)
]T

(18)

and Ψuu(k) is anNy×Nh matrix and its (p, l)th term is given

by

[Ψuu(k)]p,l = E
{

up−l,ku
∗

p,k

}

, ψuu (l, k) (19)

where φwu(k) denotes the cross PSD between the signals

w(n) and u(n), and ψuu(l, k) denotes the cross PSD between

the signal u(n) and its delayed version u′(n) , u(n − lL),
both at frequency bin k. It is worth noting that since the

noise signals are stationary during our observation interval,

the noise spectrum terms are independent of the time frame

index.

Once again, by exploiting the fact that the speech signal

s(n) and the noise signal u(n) are uncorrelated, we obtain

Ψxx(k) = Ψss(k) + Ψuu(k), where Ψss(k) is defined simi-

larly to (14). Thus, from (13) and (17), we have

Φyx(k) = Ψss(k)hk,k + Φwu(k). (20)

Now, writing (20) in terms of the PSD estimates, we obtain

Φ̂k = Ψ̂khk,k + ek (21)

where ek denotes the PSD estimation error, and

Φ̂k , Φ̂yx(k) − Φ̂wu(k) (22)

Ψ̂k , Ψ̂ss(k) = Ψ̂xx(k) − Ψ̂uu(k). (23)
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Fig. 1. Simulated setups illustration. (a) Hall setup. (b) Office setup.

A weighted least square (WLS) solution to (21) is of the

form1:

ĥk,k =
(

Ψ̂H
k WkΨ̂k

)

−1

Ψ̂H
k WkΦ̂k (24)

where Wk is the weight matrix. This yields an RTF identi-

fication estimator carried out in the STFT domain using the

CTF approximation. This estimator requires estimates of the

PSD terms φyx(p, k), φwu(k), ψxx(p, l, k) and ψuu(l, k). We

can estimate φ̂yx(p, k) and ψ̂xx(p, l, k) directly from the mea-

surements, while, the stationary noise signals PSDs ψ̂uu(l, k)

and φ̂wu(k) can be obtained from silent periods (where the

speech signal is absent).

4. EXPERIMENTAL RESULTS

In this section, the RTF identification method using the CTF

approximation is tested in simulated environment, and com-

pared with Cohen’s competing method [2] using the MTF

approximation. A speech source signal drawn from TIMIT

database [6] is sampled at 8 kHz and used in the experiments.

In addition, three noise signals recorded from NOISEX-92

database [7] are used (Airconditioner noise, destroyer room

noise and high frequency noise) with variance that varies to

control the SNR level. The STFT is implemented using Ham-

ming windows of length N = 512 with 75% overlap. The

acoustic room impulse responses are generated using a sim-

ulator [8] of Allan and Berkley’s image method [9]. The re-

sponses are measured in two rectangular rooms. The first is a

large hall, 10 m wide by 9 m long and 4 m high with rever-

beration time set to 400ms. The second is a typical office or a

small living room, 3 m wide by 4 m long and 2.75 m high with

1Assuming
(

Ψ
H

k
WkΨk

)

is not singular. Otherwise, a regularization in

needed.

reverberation time set to 200ms. The primary microphone is

located at the center of each room, and the reference micro-

phone with several spacings from it. In addition, a speech

source and a noise source are located in both rooms. Figure 1

illustrates the described setups.

For evaluating the identification performance, we use a

measure of the signal blocking factor (SBF) [2] [4] defined

by

SBF = 10 log10

E
{

s2(n)
}

E {r2(n)}
(25)

where E{s2(n)} is the energy contained in the speech re-

ceived at the primary sensor, andE{r2(n)} is the energy con-

tained in the leakage signal r(n) = h(n)∗s(n)− ĥ(n)∗s(n).
This parameter has a major effect on the amount of signal dis-

tortion and noise reduction at an adaptive beamformer output.

Figure 2 shows the SBF curves obtained by both methods

as a function of the SNR at the primary microphone in the

small room. We observe that the RTF identification based on

CTF approximation achieves higher SBF than the RTF iden-

tification based on MTF approximation in higher SNR con-

ditions, whereas, the RTF identification that relies on MTF

model achieves higher SBF in lower SNR conditions. In ad-

dition, Fig. 2 shows the RTF identification method robustness

to various noise signals, as both performances and intersec-

tion points values of the curves are nearly the same in the

presence of the three noise signals.

Similar results are obtained in Fig. 3, where the identifi-

cation is carried out in the large room setup, which demon-

strates the RTF identification method robustness to various of

setups and room sizes. In the large room the curves shapes

and intersection points values have the same characteristics,

however both methods achieve lower SBF values as the room

dimensions increase and the environment is more reverberant.
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Fig. 2. SBF curves obtained under various SNR conditions in the small room setup. The distance between the primary and

reference microphones is d = 0.2m. (a) Airconditioner noise. (b) Destroyer room noise. (c) High frequency noise.
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Fig. 3. SBF curves obtained under various SNR conditions in the large room setup. The distance between the primary and

reference microphones is d = 0.2m. (a) Airconditioner noise. (b) Destroyer room noise. (c) High frequency noise.

Figure 4 shows the SBF curves obtained as a function of

the distance between the primary and reference microphones

denoted by d. The RTF identification method under the CTF

approximation becomes more advantageous as the coupling

between the microphones becomes more complicated as a re-

sult of either larger room dimensions or increased distance

between the microphones. In addition, the robustness of the

RTF identification to the presence of a variety of noise signals

is obtained once again.

5. DISCUSSION

Investigating the performance of the RTF identification

method using the CTF approximation in various acoustic en-

vironments showed an improved RTF identification when the

SNR is high or when the coupling between the microphones

becomes more complicated. Since the RTF identification us-

ing CTF model is associated with greater model complexity,

it requires more reliable data, meaning, higher SNR values.

Furthermore, it was shown that the RTF identification method

is robust to a variety of stationary additive noise signals, to the

reverberation time and to the room dimensions and setup. It

is also worthwhile noting that the RTF identification method

under the CTF approximation enables important advantages

over competing methods that rely on the MTF approxima-

tion. The input signal used for the RTF identification is of

finite length to enable tracking of time variations. Hence,

RTF identification that relies on the CTF approximation en-

ables better representation of the input data by appropriately

adjusting the length of time frames, and better RTF identi-

fication by appropriately adjusting the length of the RTF in

each subband.
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