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ABSTRACT
In this paper, we develop a Bayesian Focusing Transforma-
tion (BFT) for wideband array processing which utilizes a
weighted extension of the Wave�eld Interpolated Narrow-
band Generated Subspace (WINGS) focusing approach, also
derived here. The BFT minimizes the mean-square error of
the transformation, thus, achieving improved focusing ac-
curacy over the entire bandwidth. We also propose a time
progressing Bayesian focused beamformer which incorpo-
rates a direction �nding stage. Experimental results demon-
strate the performance of the BFT compared to other focusing
schemes and show some of the bene�ts achieved by the BFT
in adaptive beamforming applications.

Index Terms� MVDR, Bayesian approach, adaptive
beamforming, direction �nding

1. INTRODUCTION

Wideband adaptive beamforming techniques can be classi-
�ed into two main categories. The �rst category is the non-
coherent category which employs either time domain or fre-
quency domain techniques. The non-coherent time domain
techniques utilize spatial adaptive �lters whose coef�cients
are adjusted to suppress the interferences while recovering
the desired signal [2]. The non-coherent frequency domain
techniques implement a narrowband beamformer in each fre-
quency bin. All the methods associated with the non-coherent
category are computationally expensive, have slow conver-
gence rate due to a large number of adaptive coef�cients, and
are prone to signal cancellation problem in coherent source
scenarios. The second category is the coherent category for
wideband adaptive beamforming which incorporates a focus-
ing procedure for signal subspace alignment [5]. This proce-
dure involves a pre-processor implemented as a linear trans-
formation matrix which focuses the signal subspaces at dif-
ferent frequencies to a single frequency, followed by a time
domain narrowband beamformer. The main bene�ts of the co-
herent category are low computational complexity, the ability
to combat the signal cancellation problem and improved con-
vergence properties.

There are two basic approaches to design focusing ma-
trices. The �rst approach is based on minimizing the trans-
formation error at the Directions of Arrival (DOAs). This
method requires preliminary estimates of DOAs [5], which
is a drawback. The second approach is based on spatial inter-
polation schemes, and does not require initial DOA estimates
[6]. However it requires the array to satisfy a spatial interpo-
lation rule.
Recently, Doron et al. [3], presented a new focusing trans-

formation based on the wave�eld modeling theory [4] which
does not require any preliminary DOA estimates and may be
applied to any array with a known arbitrary geometry. Us-
ing the new focusing matrix, a virtual Wave�eld Interpolated
Narrowband Generated Subspace (WINGS) array can be con-
structed. The WINGS data has a narrowband array manifold
while preserving the wideband spectral content of the wide-
band signals, allowing the use of a narrowband beamformer.
In this paper, we propose a third approach, namely a

Bayesian approach for focusing transformation design. In
this approach we bring into account the uncertainty of the
DOAs by modeling them as random variables with prior sta-
tistics.We derive a Bayesian Focusing Transformation (BFT)
minimizing the mean-square error (MSE) of the transforma-
tion, thus achieving improved focusing accuracy over the en-
tire bandwidth. The BFT utilizes a weighted extension of the
WINGS, to be also developed here. The proposed focusing
transformation is a compromise between the �rst focusing ap-
proach, which requires preliminary DOAs estimates, and the
spatial interpolation based second approach, which does not
require any DOAs estimates.
The paper is organized as follows. In Section 2, we for-

mulate the problem of interest. In Section 3, the BFT is de-
rived. Section 4 presents a short overview of the WINGS and
a weighted extension is suggested which helps in the deriva-
tion of the BFT. In Section 5, the focused MVDR beamformer
is presented. In Section 6, a time progressing algorithm is
proposed which incorporates a Direction Finding (DF) stage
operating on the focused date followed by the Bayesian fo-
cused beamformer. In section 7, we consider a simple case of
a linear array and demonstrate some of the bene�ts achieved
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by the BFT. Section 8 concludes our work.

2. PROBLEM FORMULATION

Consider an arbitrary array ofN sensors sampling a wave�eld
generated by P statistically independent wideband sources, in
the presence of additive noise. For simplicity, we con�ne our
discussion to the free and far �eld model. The signal mea-
sured at the output of the nth sensor can be written as

xn(t) =
PX
p=1

sp(t� �np) + nn(t); n = 1; ::; N; (1)

where fsp(t)gPp=1 and fnn(t)g
N
n=1 denote the radiated wide-

band signals and the additive noise processes, respectively.
The parameters f�npg are the delays associated with the sig-
nal propagation time from the pth source to the nth sensor.
Let f
ig

P
i=1 be the DOAs of the sources. 
 � � in 2-D

and 
 � (�; ') in 3-D where � in the azimuth angle and '
is the elevation angle. For simplicity, we deal with the 2-D
case. Each T seconds of the received data are transformed to
frequency domain and divided into K snapshots yielding the
following matrix equation

xk(wj) = A�(wj)sk(wj) + nk(wj);

j = 1; 2; :::J; k = 1; 2; :::K (2)

where xk(wj); sk(wj) and nk(wj) denote vectors whose el-
ements are the discrete Fourier coef�cients of the measure-
ments, of the unknown sources signals and of the noise, re-
spectively at the kth subinterval and frequency wj . A�(wj)
is the N � P direction matrix

A�(wj) � [a�1(wj);a�2(wj); :::;a�P (wj)]: (3)

The vector a�(w); referred to as the array manifold vec-
tor, is the response of the array to an incident plane wave
at frequency w and DOA �: We assume that the noise vec-
tors nk(wj) are independent samples of stationary, zero mean
Gaussian random process, with unknown covariance �2jI .
The signal vectors sk(wj) are independent samples of sta-
tionary , zero mean Gaussian random process which were fed
into auto regressive �lter:The noise process is assumed un-
correlated with the signal process. The Bayesian approach
employs statistical model where the DOAs, f�igPi=1 are sta-
tistically independent random variables.

3. BAYESIAN FOCUSING TRANSFORMATION

Our goal is to derive a linear focusing transformation
T (wj) optimal in the MMSE sense, i.e. �nd T (wj) which
minimizes the following expectation

TMMSE(wj) = argmin
T(wj)

�
E�jY f (4)

kA�(w0)�T(wj)A�(wj)k
2
F j Y

oo
;

where w0 is the focusing frequency, Y is the observed data
and k�kF denotes the Frobenious norm. It can be shown that

E�jY

n
kA�(w0)�T(wj)A�(wj)k

2
F j Y

o
(5)

=

Z �

�= ��

d� ka�(w0)�T(wj)a�(wj)k
2
PX
i=1

f�ijY(�j Y) :

k�k is the Euclidian norm and f�ijY(�j Y) are the conditional
PDFs of the DOAs. De�ning

�2(�) ,
PX

i=1

f�ijY(�j Y); (6)

and substituting (6) into right-hand side of (5) yields the fol-
lowing integral to be minimized

TMMSE(wj) = argmin
T(wj)

Z
�

(7)

d� k�(�)(a�(w0)�T(wj)a�(wj))k
2
:

In the following section, we derive a closed form solution of
(7). First, a brief overview of the WINGS is presented and
then a weighted extension is derived. The formalism to be
used during this development will help to solve (7).

4. WINGS FOCUSING APPROACH

In this section, we review the main points of the WINGS, and
develop a weighted extension which incorporates an angular
weighting function.

4.1. WINGS

The WINGS focusing approach [3] is based on the wave�eld
modeling theory [4] according to which, the output of almost
any array x(w) of arbitrary geometry can be written as a prod-
uct of array geometry dependent part and wave�eld dependent
part, i.e. x(w) = G(w) (w) whereG(w) is a sampling ma-
trix which is independent of the wave�eld and the coef�cient
vector  (w) is independent of the array. By the wave�eld
modeling formalism, the steering vector can be expressed by
terms of orthogonal decomposition

a�(w) =
X
n

gn(w)h
�
n(�); (8)

where gn(w) are the columns of the sampling matrix G(w)
and fhn(�)g is an orthogonal basis set in L2(�): In 2-D, we
use the Fourier basis, i.e. hn(�) = 1p

2�
e�in� . In the WINGS

approach it is desired to �nd T(wj) which satis�es the fol-
lowing equation

a�(w0) = T(wj)a�(wj) + e�(wj); 8� (9)
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Using (8), the error term can be expressed as

e�(wj) = [G(w0)�T(wj)G(wj)]b�; (10)

where the vector b� contains the basis functions fhn(�)g as
its elements. Let "j be de�ned as the L2 norm of the error

"2j ,
1

N

Z
�

d� ke�(wj)k2 : (11)

The elements of b� comprise a complete and orthogonal ba-
sis set over L2(�); thus, one may consider (10) to be the
orthogonal decomposition of the error vector e�(wj): We
can use Paraseval's identity and derive the following Least-
Square(LS) minimization problem

"2j =
1

N
kG(w0)�T(wj)G(wj)k2F : (12)

(12) has a well known solution

T(wj) = G(w0)G
y
(wj); (13)

where Gy(wj) denotes the pseudo-inverse of G(wj): For
more additional details see [3] and [4].

4.2. Weighted WINGS

We now extend the WINGS transformation (13) to incorpo-
rate an angular weighting function �(�);which may be used to
enhance the LS �t of the array manifold within a pre-selected
angular region

min
T(wj)

"2j =
1

N

Z
�

d� k�(�)e�(wj)k2F (14)

=
1

N

Z
�

d� k�(�)(a�(w0)�T(wj)a�(wj))k
2
:

Note that this generalized form includes many focusing ma-
trices as private cases. It reduces to the previously described
WINGS by taking �(�) � 1: Taking �(�) =

P
i �(� � �̂i)

yields the focusing matrices originally proposed for wideband
DOA estimation in the pioneering work of [5] which focuses
at the preliminary estimates of the DOAs

n
�̂i

o
:

In order to solve (14) let us �nd C(w); the orthogonal
decomposition of the product �(�)a�(w)

[C(w)]mn �
Z
�

d��(�) [(a�(w)]m hn(�): (15)

Let �(�) =
P

n �nhn(�) be the orthogonal decomposition
of the angular weighting function �(�); then inserting (8) we
may write

[C(w)]mn =

Z
�

d�
X
p

�php(�)
X
l

Gml(w)h
�
l (�)hn(�)

=
X
p;l

�pGml(w)

Z
�

d�hn(�)hp(�)h
�
l (�): (16)

In 2-D Z
�

d�hn(�)hp(�)h
�
l (�) =

1p
2�
�n+p�1; (17)

which yields, for the 2-D case

[C(w)]mn =
1p
2�

X
p

�pGm;n+p(w): (18)

We now insert into (14) the orthogonal decomposition
�(�)a�(w) = C(w)b� and get the following minimization
integral

"2j =
1

N

Z
�

d� k[C(w0)�T(wj)C(wj)]b�k
2
: (19)

Now we can use Parseval's identity

"2j =
1

N
k[C(w0)�T(wj)C(wj)]k2F : (20)

(20) is a LS problem with the following solution

T(wj) = C(w0)C
y
(wj): (21)

From the above derivation one can easily see that (14) has
exactly the same form like (7). Now, we can easily derive
the closed form expression for the MMSE Bayesian focusing
transformation:

TMMSE(wj) = C(w0; �(�))C
y
(wj ; �(�)) (22)

where �(�) is given by (6).

5. MVDR FOCUSED BEAMFORMER

In this section, we describe a framework example of the BFT
for the MVDR adaptive beamformer using the SMI imple-
mentation. The MVDR - SMI method is implemented for
the wideband case in the frequency domain, i.e. it is imple-
mented as a narrowband beamformer at each frequency bin
(see e.g. [1]). The DFT implementation of the frequency
domain MVDR-SMI beamformer is based on estimation the
narrowband sample covariance matrix at each frequency bin

R̂(wj) =
1

K

KX
k=1

xk(wj)x
H
k (wj): (23)

The narrowbandMVDR - SMI adaptive weight vector is com-
puted at each frequency bin as

ŵ�(wj) =
R̂�1(wj)a�(wj)

aH� (wj)R̂
�1(wj)a�(wj)

: (24)
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The MVDR-SMI focused adaptive beamformer may be sim-
ply implemented as a narrowband adaptive beamformer oper-
ating on the temporal focused data vector

yk(n) =
JX
j=1

T(wj)xk(wj)e
iwjnTs

�= A
(w0)s(n) + ntrans(n); (25)

where s(n) is the temporal vector of wideband unknown
source signals within the focused frequency band [w1 : wJ ],
Ts is the sampling time interval and ntrans(n) is the trans-
formed noise. The sample covariance matrix of the focused
vector is estimated by

R̂focused =
1

KJ

X
k;n

yk(n)y
H
k (n): (26)

Now, the focused coherent adaptive beamformer MVDR
weight vector is simply computed in the time domain by

ŵ�;wings =
R̂�1
focuseda�(w0)

aH� (w0)R̂
�1
focuseda�(w0)

; (27)

where w0 is the focusing frequency. For more details, see [1]
and [3].

6. TIME PROGRESSING ALGORITHM

In this section we present a time progressing algorithm which
is based on the proposed Bayesian focusing approach. The
BFT assumes that the aposteriori PDFs of the DOAs are avail-
able, however, in practice we need to estimate these PDFs.
Let us assume a Gaussian model for the DOAs, so, we have
to estimate the �rst two moments of each DOA. The condi-
tional mean of �i is approximated by �̂i_DF which is the esti-
mate of the DF algorithm. The standard deviation is taken to
be half the beam width of the array. A block diagram of the
proposed algorithm is given in �gure 1. Each T seconds of
data is divided intoK snapshots, on which, a Bayesian focus-
ing transformation is applied and yields the focused vector.
The design of the focusing transformation uses the estimated
aposteriori PDFs from the previous T seconds, while in the
�rst T seconds, the algorithm uses �(�) � 1: The focused
temporal vectors fykgKk=1are used as inputs to the focused
MVDR beamformer and for updating the estimation of the
conditional PDFs.

7. EXPERIMENTAL RESULTS

In this section, we present a simulation example comparing
the performance of the BFT to that of other methods. We con-
sider P= 6 statistically independent wideband sources propa-
gating towards a linear array of N=10 sensors. The spacing
between two successive elements is d = �min

2 ; where �min

Fig. 1. Block diagram of the Bayesian focused MVDR beam-
former time progressing algorithm.
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Fig. 2. MSE transformation curves as a function of frequency
in base band.

corresponds to the highest frequency of the bandwidth. The
true DOA vector is � = f50�; 70�; 93�; 100�; 119�; 135�g
where 90� is the broadside direction: The bandwidth of the
sources is 60Hz taken around fc=100Hz. We used the MU-
SIC algorithm [7] for DOA estimation. The desired signal is
assumed to be the signal from 100�. The Signal to Interfer-
ence Ratio (SIR) is 9dB; and the Signal to Noise Ratio(SNR)
is 0dB.
Each T = 10 seconds of the received data vector were

converted to baseband, divided into K = 16 snapshots and
transformed to the frequency domain. We compare 4 differ-
ent methods implementing wideband adaptive beamforming,
the RSS [5] - which requires preliminary DOAs estimates,
WINGS, and the BFT - are all coherent methods. The forth
method is the non coherent adaptive beamformer. The results
were obtained by averaging over 500 independent runs.
Figure 2 shows the frequency dependent MSE of the fo-

cusing transformation for the various coherent methods. The
MSE is a summation of the errors over the true DOAs. It
can be clearly seen that the Bayesian focusing transformation
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Fig. 3. Histogram of the array gain acheived by the vari-
ous approaches. (a) Non coherent processing. (b) RSS. (c)
WINGS. (d) BFT

achieves the lowest error along the entire bandwidth.
Figure 3 shows a histogram of the array gain (AG) values

for the various methods. The AG is de�ned by

AG =
SIRout
SIRin

; (28)

where SIRout and SIRin are the signal to interference ratios
at the beamformer output and input, respectively. The low-
est AG is that of the non-coherent processing, since it has
a large number of beamformer coef�cients to adjust. The
AG achieved by the BFT is roughly 29dB while that of the
WINGS and RSS is only about 23dB: The superior perfor-
mance of the BFT is expected due to the fact that the BFT has
the lowest error across the entire bandwidth, yeilding more
accurate focused data.

8. CONCLUSIONS

The proposed Bayesian approach takes into account the un-
certainty in the DOAs during the focusing process. We have
developed closed form expression for the BFT. To this end
we have derived a weighted extension to the WINGS fo-
cusing transformation. The BFT assumes that the PDFs of
the DOAs are known and yields an optimized MSE focus-
ing transformation. We also proposed a time progressing al-
gorithm which employs a DF algorithm and our Bayesian
focused beamformer. We demonstrated that the Bayesian
approach achieves lower transformation error over the en-
tire bandwidth, thus yielding a high quality focused vec-
tor relative to other checked focusing approaches. The AG
achieved by each of the considered methods illustrates the
bene�ts of the BFT relative to over focusing methods and
also demonstrates the advantage of the coherent methods over
non-coherent processing.
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