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Abstract—We consider a problem setup, in which a desired
speech source is measured by a microphone and by a video
camera in an interfering environment. We assume that the
interfering sources in the audio signal are independent of the
interfering sources in the video signal (e.g., the video signal
does not capture the interfering speakers). Our objective in this
paper is to detect the activity of the desired source. To address
this problem, we take a kernel based geometric approach for
obtaining a representation of the measured signal, in which
the effect of the interfering sources is reduced. Based on this
representation, we devise a measure for the activity of the
desired source; experimental results demonstrate its superiority
compared to competing methods in the detection of speech signals
in the presence of different challenging types of interferences,
including interfering speakers in the audio signal.

Index Terms—Multi-modal signal processing, kernel methods,
audio-visual speech activity detection.

I. INTRODUCTION

We address the problem of activity detection of a speech
source, measured both by a microphone and by a video camera
pointed at the face of the speaker. We term this source as
“the desired source”. Assuming that it is measured in the
presence of interferences, the objective in this paper is to
detect the desired source while ignoring the interferences. We
consider different types of interfering sources (interferences)
in the audio signal, such as speech from other speakers,
environmental noises, and transients, which are abrupt inter-
ruptions such as door-knocks [1]–[3]. The video signal may
contain interferences such as head and mouth movements,
which make the detection of the desired source difficult. Our
main assumption is that the interferences in the two modalities
(audio and video) are independent of each other, e.g., the video
camera does not capture the interfering speakers.

The activity detection of the desired speech source may be
useful for a variety of applications such as speech enhance-
ment, speech and speaker recognition and speech diarization,
where the goal is to determine “who spoke when” [4]–[8].
Speech diarization, for example, is a challenging problem
since first, time intervals with active speech have to be
accurately detected while ignoring both background noises,
and transients, which often appear similar to speech [9],
and second, the different speakers have to be distinguished,
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typically by assuming statistical models. In the audio-visual
setting considered here, the activity of the desired source
directly implies that the corresponding speaker is speaking
regardless of presence or absence of interfering sources.

To address the problem of desired source activity detection,
we take a multi-modal geometric approach, where the goal is
to learn a representation of the data by exploiting relations
(affinities) between data points in the different modalities
(audio and video). Classical kernel based geometric meth-
ods, e.g., those presented in [10]–[14], typically address the
problem of non-linear dimensionality reduction of single-
modal data. They are based on constructing an affinity kernel
capturing relations between the data points, and provide a low
dimensional representation via the eigenvalue decomposition
of the affinity kernel. Recent studies suggest to extend these
kernel based geometric methods to the multi-modal case by
constructing separate affinity kernels for each modality, and
then by fusing the modalities through different combinations
of the affinity kernels, e.g., by their weighted sum [15]–[27].

Lederman and Talmon presented in [26] a multi-modal
fusion approach, where the data in the different modalities is
fused by a product of affinity kernels, constructed separately
for each modality. This fusion approach is particularly useful
for the representation of the desired audio-visual source since,
according to the analysis presented in [26], it reduces the effect
of modality-specific sources, which in our problem setting
are the interferences, by assumption. Hence, the obtained
representation respects the relations between the data points
according to the source present in both the modalities, which
is the desired source in our case; therefore, it is particularly
suitable for the activity detection of the desired source. In [28],
we analyzed this fusion approach in a discrete setting showing
that it may be further improved by a proper selection of the
kernel bandwidth.

In this paper, we propose an algorithm for activity de-
tection of a desired speech source. The algorithm is based
on constructing two affinity kernels, one for each modality
(audio and video), in a domain of features, separately built
for each modality. We fuse the modalities by a product of
the affinity kernels as in [26], [28] and devise a measure
for the presence of the desired source using the eigenvalue
decomposition of the product kernel. We apply the proposed
algorithm for the detection of audio-visual speech signals in
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the presence of multiple interfering audio sources including
different speakers, background noises, and transients. Our
simulation results demonstrate improved detection scores com-
pared to single-modal variants, which are based on either the
audio or the video signals, as well as compared to alternative
fusion schemes.

We note that we consider as the main challenge in this study,
the presence of multiple interfering sources. Specifically, we
consider interferences that are of the same type as the desired
source, i.e., other speakers in the audio signal. In addition,
the video signal comprises the entire face of the speaker;
therefore, head movements are considered interferences in the
video. We note that in [28], we addressed a special case of
the problem that is considered here; previously, we considered
the presence of only a single interfering transient noise source,
which is considerably different from speech. In addition and in
contrast to this paper, only the mouth region of the speaker was
assumed as the video signal, requiring an accurate detection
of the mouth region as a preprocessing stage.

II. PROBLEM FORMULATION

Consider a speech signal measured by a single microphone
and by a video camera pointed at the face of a speaker.
The signal is processed in consecutive frames, which are
assumed aligned; let vn ∈ RLv and wn ∈ RLw be feature
representations of the nth time frame in the first and the second
modalities (i.e., audio and video), respectively, such that Lv

and Lw are the total number of features in each modality.
We use the Mel-Frequency Cepstral Coefficients (MFCC) [29]
and motion vectors [30], for the representation of the audio
and the video signals, respectively, as we describe in detail
in [3]. The MFCCs are widely used for the representation of
audio signals, and the motion vectors capture the movement
of the mouth within the video, assumed to be associated with
speech. In both modalities, we aggregate the features of three
consecutive frames such that vn is given by the MFCCs of
frames n− 1, n, n+ 1. Consider a sequence of N such pairs
of frames:

{(vn,wn)}Nn=1 . (1)

We assume that the measured audio signal comprises Mv +1
sources: S1, S2, ...SMv and Sd, where the superscript d stands
for the desired source. Namely, the audio frame vn is given
by a mapping, denoted by f , of the sources to the features
space:

vn = f(Sd, S1, S2, ...SMv ).

The video signal comprises the video recording of the face
of a speaker. Yet, there may be both natural mouth and head
movements, which are not directly related to speech and are
considered as interferences. Assuming Mw such interfering
sources, the corresponding video frame wn is given by:

wn = g(Sd, S1, S2, ...SMw),

where g denotes the mapping of the sources to the feature
space of the video signal. With the exception of the desired

source, the sources of the audio and the video signals are
assumed independent. In addition, the sources are assumed to
be present or absent independently of each other. Specifically,
we assume two hypotheses, H0 and H1, for the absence and
the presence of the desired source, respectively. Accordingly,
let 1n be an indicator for the presence of the desired source
in the nth frame, given by:

1n =

{
1 ; n ∈ H1

0 ; n ∈ H0

}
. (2)

The goal in this study is to detect the activity of the desired
source, i.e., to estimate the indicator in (2).

III. DESIRED SPEECH SOURCE ACTIVITY DETECTION

A. Multi-modal Fusion via the Product of Affinity Kernels

For completeness, we describe the fusion process based on
a product between affinity kernels constructed separately for
each modality, as proposed in [26]. Let Kv ∈ RN×N be
an affinity kernel of the first modality (i.e., audio), whose
(n,m)th entry, denoted by Kv(n,m), is given by:

Kv(n,m) = exp

(
−||vn − vm||2

εv

)
, (3)

where εv is the kernel bandwidth whose selection we studied
in [28]. By dividing each column by its sum, we construct a
row stochastic matrix, which is denoted by Mv ∈ RN×N , and
its (n,m)th entry, Mv(m,n), is given by:

Mv(n,m) =
Kv(n,m)

dv(n)
, (4)

where dv(n) =
∑N

m=1Kv(n,m). Similarly to Mv , we con-
struct a row stochastic matrix Mw ∈ RN×N for the second
modality, and the data from the two modalities are fused by
the product of the row stochastic matrices:

M = Mv ·Mw, (5)

where M ∈ RN×N is viewed as aggregating the relations
between the data points in the two modalities. Lederman and
Talmon considered in [26] the continuous counterparts of
Mv(n,m), Mw(n,m) and M(n,m) as diffusion operators.
They showed that the continuous operator corresponding to
M(n,m) is an alternating diffusion operator, which integrates
out modality-specific sources by applying the diffusion process
in two steps corresponding to the two modalities.

B. Desired Source Activity Detection

For the detection of the desired source, we apply an
eigenvalue decomposition to M. The eigenvectors respect
the relations between the multi-modal data points aggregated
in the matrix M, and therefore, they are often used in the
literature to form a low dimensional representation of the data
[10]. The matrix M is row stochastic since Mv and Mw

are row stochastic matrices, so it has an all ones eigenvector
corresponding to the eigenvalue one, which we neglect since
it does not contain information [10]. Since M integrates out
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Fig. 1: An example of a video frame.

the modality-specific sources, which are the interferences in
our case, its eigenvectors represent the data according to the
desired audio-visual source. For the detection of the desired
source, we use the leading (non-trivial) eigenvector, which we
denote by ν1 ∈ RN ; the nth entry of ν1, denoted by ν1(n),
corresponds to the nth frame of the measured signals (audio
and video) and we view it as a new mapping h of the nth
frame according to the desired source:

ν1(n) = h(Sd).

The leading eigenvector of an affinity kernel is typically used
in the literature for clustering such that the nth data point is
clustered according to the sign of ν1(n) [31]. Indeed, we have
found in our experiments, that the data are properly clustered
by ν1 according to the presence and the absence of the desired
source. Accordingly, we propose to estimate the indicator for
the presence of the desired source 1n in (2) by comparing the
eigenvector entries to a threshold τ :

1̂n =

{
1 ; ν1(n) > τ
0 ; otherwise

}
. (6)

Namely, we view the leading eigenvector as a continuous
measure of the presence of the desired source. The threshold
τ controls the trade-off between the probability of correct
detection of the desired source and the probability of false
alarm, and its setting is application dependent.

IV. EXPERIMENTAL RESULTS

We consider an audio-visual recording of a speaker mea-
sured by a microphone and by a video camera pointed at the
face of the speaker. We use a dataset, which we presented in
[3], comprising 11 sequences of different speakers, 60 s long
each. The video signal is measured in 25 fps frame rate, and
the audio signal, which is measured in 8 kHz, is aligned to the
video signal using frames of 634 samples with 50% overlap.

To simulate the interferences, we synthetically add to the audio
signal different types of background noises and transients
taken from a free online corpus [32], and other speakers taken
from the dataset in [3]. The video signal comprises the entire
face of the speaker as demonstrated in Fig. 1, in contrast to
[28], where cropping of the mouth region of the speaker was
required as a preprocessing step. Therefore, it may contain
natural head and mouth movements, which are not related to
speech. To set the ground truth of the activity of the desired
speech source (which also appears in the video), we use the
clean audio signal and consider the desired source active in a
frame if its energy level is above 1% from the maximal energy
value in the sequence. In this type of ground truth setting, the
resolution of the presence and absence of the desired source
is up to a single frame and it may be used, for example, for
the enhancement of the desired source [8].

An example of the detection of the desired speech source
obtained by the proposed algorithm is presented in Fig. 2,
where we consider three audio sources comprising two speak-
ers – one desired, one interfering and babble noise. For the
clarity of presentation, we use a relatively high signal to noise
ratio (SNR) of 20 dB, where the SNR is calculated with respect
to the desired speaker and the babble noise. Hence, the main
challenge in this example is to distinguish between the desired
speech signal and the speech signal of the interfering speaker.
Indeed, the spectrogram of the measured audio signal, pre-
sented in Fig. 2 (Bottom), demonstrates that just by observing
the spectrogram, it is hard to distinguish between the speech
parts corresponding to the desired speech and the interfering
speech. In Fig. 2 (Top), we qualitatively compare the proposed
method for the detection of the desired source to an alternative
kernel method termed “Hadamard”, in which, instead of the
product between the kernels in (5), the modalities are fused
by the Hadamard product: Mv ◦Mw, where ◦ denotes point-
wise multiplication. For both approaches, we set the value of
the threshold τ in (6) to provide 80% correct detection rate
and compare their false alarm rates. It may be seen that the
proposed approach provides significantly fewer false alarms,
and the competing method wrongly detects the activity of the
interfering speech source, e.g., in the time interval after the
24th second.

In Fig. 3 we present the results of a quantitative evaluation
of the proposed approach in the form of receiver operating
characteristic (ROC) curves, which are plots of detection
versus false alarm rates. The proposed approach is compared,
in addition to the method “Hadamard”, to a method based
on fusing the modalities via a sum of the affinity kernels,
i.e., Mv + Mw, termed “Sum” in the plots. In addition, we
compare the proposed approach to its single-modal variants,
termed “Audio” and “Video”, which are based on estimating
the speech indicator in (6) using the leading eigenvector of the
kernels Mv and Mw, respectively. We observe in the plots that
the approaches based on a single modality attain comparable
results; the detector of the desired source based only on the
audio signal is limited due to high similarity of the desired
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Fig. 2: Qualitative assessment of the proposed algorithm for
the desired speech source activity detection in the presence of
three sources: the desired speech source, an interfering speech
source, and babble noise with 20 dB SNR. (Top) Time domain,
input signal - black solid line, true desired speech source -
orange squares, true interfering speech source - purple stars,
“Hadamard” with a threshold set for 80% correct detection rate
- green triangles, proposed algorithm with a threshold set for
80% correct detection rate- blue circles. (Bottom) Spectrogram
of the input signal.

source especially to the other speakers. The performance based
only on the video signal are also limited both due to modality-
specific sources such as movements of the head and due to the
high resolution of the ground truth. Indeed, there exist speech
parts that do not involve the movement of mouth in certain
time frames. The alternative fusion schemes perform slightly
better than the single-modal approaches. Finally, the proposed
approach for the detection of the desired source outperforms
all other methods and provides improved detection scores for
all false alarm values.

V. CONCLUSION

We have addressed the problem of audio-visual speech
source detection in the presence of interferences. We proposed
an algorithm for the detection of a desired source by fusing the
modalities via a product of kernels, constructed separately for
each modality. An eigenvalue decomposition of the product
kernel yields a useful representation of the data, in which
the effects of the interfering sources are reduced, allowing
us to devise a measure of the presence of the desired source
based on the leading eigenvector. Experimental results have
demonstrated the improved performance of the proposed al-
gorithm in challenging environments, including speech activity
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Fig. 3: Probability of the detection vs probability of false
alarm. Source types: (a) two speakers and babble noise with 20
dB SNR, (b) two speakers, door-knocks transients and white
Gaussian noise with 15 dB SNR.

detection in audio-visual data under presence of modality-
specific interfering sources.
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