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Abstract—Audio-visual voice activity detectors are tradition-
ally based on fixed algorithms and do not consider the quality
of the signals in each modality. This could significantly decrease
the detector’s performance in cases when one of the signals is
relatively of poor quality. We proposed an improved solution,
which evaluates the signal’s quality in each modality and weights
them accordingly. In this paper, we present a method for
estimating the video quality, particularly in the presence of noisy
motion vectors or global motion of the camera. The fussy motion
vectors are intended to simulate blurred, unfocused video or low
resolution sensor. An adaptive setting of the weighting parameter
between the audio and the video signals ensures an optimal bi-
modal detector. The proposed method was incorporated with an
audio-visual voice activity detector, and was tested with a real
data set. Simulation results have shown an improved performance
compared to the existing fixed method.

I. INTRODUCTION

Voice activity detection algorithms often rely on the audio
signal. Usually those algorithms assume that the noise is
slowly time-varying with respect to the speech, and use that
assumption to separate them efficiently. However, this assump-
tion does not hold in the presence of transient noise, like
keyboard typing or door knocking. In that case, a significant
decrease in the audio detector’s performance is expected.
Mousazadeh and Cohen, [1], recently introduced a voice ac-
tivity detector (VAD) for non-stationary noises. The proposed
detector employs spectral clustering, and tries to deal with
the transient’s problem by averaging noise statistics over short
windows in the time domain. The results of this detector in
the presence of transients were limited.

For that reason, VADs which use the video signal are
advantageous. The video signal is immune to all kinds of
noises, including transients. The first step in the detection
process based on video is to focus on the relevant block in
each frame that contains the lips. The extraction of the lips
can be based on several algorithms. One approach for lips
detection is to use the features of the lips. In [2] and [3] the
extraction of the lips features is based on the contours of the
lips. Another approach is to exploit the unique shape and color
of the lips ( [4], [5]). One of the main approaches for visual
voice activity detection is to estimate the movement of the lips
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during speech intervals. This approach has shown mainly good
performance, although it was found sensitive to movement of
the lips in non-speech frames. In [6] and [7] motion estimation
approach was utilized, which exploits the motion vectors for
voice activity detection. The energy in the mouth region is
determined using optical flow, and the classification is based
on a Hidden Markov Model (HMM).

While VADs which are based on visual detection may
overcome the problem of transient noise, their performances
are usually inferior to the audio-based detectors in a quiet
enviroment or in the presence of stationary noise. This leads
to a growing interest in the combination of both detectors,
thus, exploiting the strengths of each modality [8].

Recently, Dov, Talmon and Cohen [9] introduced a new
audio visual voice activity detector. This detector is based
on a supervised learning procedure, and a labeled training
data set is taking into consideration. Diffusion map is applied
separately and similarly to both the audio and video signal’s
features in order to build a low dimensional representation.
The visual features are based on the motion vectors of the
video. The calculation is based on the Lucas-Kanade method,
as described in [10] and [11]. The measures of the two
modalities are equally merged into one bi-modal detector. The
experimental results in [9], show that the suggested detector
outperforms other state-of-the-art AV-VADs.

However, the combined bi-modal detector presented in [9]
does not consider the signals’ absolute quality or their relative
quality (for example when one signal is significantly better
than the other), and makes a blind decision, using a fixed
formula that weights the two signals equally.

in this paper we take into consideration the quality of
the video signal, to wisely determine the weighing of the
two input signals. The purpose of this work is to efficiently
estimate the quality of the video signal, and adaptively build
the weighting function between the audio and the video modal-
ities. The video quality is based on characteristics like image
sharpness, texture, global motion and rotation of the camera.
Experimental results demonstrate the improved performance of
the adaptive weighting over the fixed weighting modal. The
algorithm calculates the variance of the motion vector in a
frame-by-frame manner and sets a quality factor for the entire
video.

The paper is organized as follows: in Section II, the problem
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is described and formulated. The description of a video mod-
ulation, in particular noise and global motion modulation is
presented in Section III. Experimental results demonstrating
the improved performance of the proposed algorithm are
presented in Section IV.

II. PROBLEM FORMULATION

Let P (ai) and P (vi) denote measures of voice activity
from the audio and the video signals, respectively, which were
calculated in [9]. The bi-modal measure of voice activity is
given by

PB(ai, vi) = (1− α)P (ai) + αP (vi), (1)

where α is a weighting parameter in the range of [0, 1]. For
example, in case when the audio signal is relatively clean and
the video signal has poor quality, α should be close to 0.

In this work, we focus on the quantification of the video
signal quality, while assuming the audio signal is in a decent
condition, meaning that α is in the range of [0, 0.5], depending
solely on the video quality. The goal in this paper is to adjust
α over time. Specifically, α should be set adaptively according
to the video quality parameter, i.e.,

α = f(Q(vi)) (2)

where Q(vi) is a general quality factor of the video signal
vi, and f(Q(vi)) is a function of Q(vi). The quality factor
addresses challenging real scenarios in the video signals, from
blurred and unfocused video, to global motion of the camera.
Detailed definition of the quality factor Q(vi) is described later
in the paper.

In future work the quality of the audio signal should also
be taken under consideration. In that case, the quality factor
of each signal should be normalized to the range of [0, 1], and
α would be expressed as

α =
Q(vi)

Q(ai) +Q(vi)
, (3)

where Q(ai) and Q(vi) are the general quality factors of the
audio and video signals, respectively.

III. VIDEO MODULATION

The proposed algorithm evaluates the quality of the video
signal. In order to do that, a set of objective parameters of the
video signal has to be defined. Let {vi}Ni=0 be the video data
set comprising of N consecutive video frames vi ∈ RWxH

where W and H are the number of pixels in the raw and
column of each frame, respectively. In each frame a cropping
the bounding box of the mouth is performed as a preprocessing
stage. The cropping method extends the scope of this work.
Two scenarios that are taken under consideration in this paper
are noisy frames and global motion of the camera.

Fig. 1: Motion vectors presented on their matching frame.

A. Noisy Frame Modulation

Noisy image may results from a variety of reasons, like
poor quality of the sensors, blurred, unfocused frame, or low
textured and uniformed areas within the frame. Each frame
in the video was devided into 100 macroblocks, where a
macroblock consist from a group of pixels and is used as a
processing unit in the image. We use the motion vectors of
each frame to determine its quality, hence the motion vectors
associated to each motion-informative macroblock depending
upon the quality of the frame. Motion vectors are used to
represent a macroblock in a frame, based on the position
of this macroblock (or a similar one) in the previous frame.
The optical flow method tries to calculate the motion between
two consecutive image frames, i.e. it calculates the difference
between these two frames. Under this assumption it’s easy
to see that the motion vectors are extremely informative to
determine the frame quality. While the motion vectors of a
clean frame are gradually varying, those of a noisy frame
are random, and have almost no correlation to one another.
Figure 1 presents a clean frame from the detection process,
with its corresponding motion vectors.

Let γi be characteristic angle of the macroblock mi, which
states for the angle of its motion vector in degrees. The
characteristic differential angle of mi is given by

∆i =
1

4

4∑
j=1

γi − γj , (4)

where mi, mj are consecutive macroblocks so that
{m1,m2,m3,m4} are the up, down, right and left neighbor
of the macroblock mi. The parameters {∆i}Mi=1 are random
variables, where M is the number of macroblocks in the frame.
∆i represents the similarity between a certain macroblock to
its surrounding, so as homogeneous the region is, ∆i get closer
to 0. The variance of ∆i is given by

Vf = E[∆2
i ]− E[∆i]

2, (5)



2016 ICSEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING 3

Fig. 2: ROC curves of the original detectors presented at [9].
α set to be a constant at value 0.5

where Vf is defined as the characteristic parameter of the
entire frame. Intuitively, for highly noisy frames, Vf should
get high values, and vice versa. This method of Vf calculation
is applied in a frame-by-frame manner to determine the noise
characteristic parameter for the entire video

V =
1

N

N∑
f=1

Vf , (6)

where the given video signal comprises N frames.

B. Global Motion Modulation

When global motion is present in the frame, the motion
of the lips is usually negligible, what makes it harder to
detect. Therefore, a significant global motion of the camera
could have an impact on the video-based detection process.
Multiple works practice and explore the issue of global motion
estimation. For example, Basu and Pentland [12] investigate
how raw, noisy motion vectors can be used to estimate global
camera motion. For our use, an estimation of the absolute
value of the global motion is required. Recall that in [9],
the proposed visual features for voice activity detection are
based on the motion vectors of the video signal. The motion
vectors field does not properly represent fast global motion in
the video. However, absolute values of the motion vectors are
always significantly higher in global motion’s frames than in
regular ones. Let mi be the i-th macroblock of the frame vf ,
and let MVix and MViy denote the horizontal and the vertical
components of the motion vector. We define a characteristic
value for each frame vf given by

|MVf |avg =
1

M

M∑
i=1

√
[MVix]2 + [MViy]2], (7)

where M is the number of macroblocks in the frame vf . This
calculation of |MVf |avg is applied in a frame by frame manner

Fig. 3: the empirical dependence between the noise
parameter V and the weighting parameter α.

to determine the global motion characteristic parameter for the
entire video

|MV |avg =
1

N

N∑
f=1

|MVf |avg, (8)

where the given video signal comprising N frames. In cases
that |MV |avg is greater than a certain threshold value, global
motion of the camera is assumed.

The quality factor Q(vi) is calculated independently for
each of the two parameters presented above, i.e., the noise
parameter (6) and the global motion parameter (8). For each
parameter, a different value for Q(vi) is set, where the overall
Q(vi) is the lowest one. The explicit calculation for each
parameter is described in the next section.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental setup is based entirely on the simulation
described in [9]. The data set is obtained from 7 speakers
loudly reading an article. The training data set contains 30
sec of 6 speakers, while the test data is using 60 sec of
each of the 7 speakers. The video is recorded using a frontal
camera of the smartphone (25 [fps], 640x480 resolution). A
bounding box of the mouth (110x90 pixels) is cropped out of
the video. The number of macroblocks of the motion vector
calculation is chosen to be M=100, which means that each
macroblock consist of 11x9 pixels. Figure 1 shows an example
of high quality, non-noisy frame, and its corresponding motion
vectors.

B. Receiver Operating Characteristic

In order to evaluate the detector’s performance of the
proposed algorithm, an objective, reliable measure is needed to
be defined. First, it should be mention that the ground truth for
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Fig. 4: The ROC curves of the detectors while adding white
gaussian noise with variance 1 and α = 0.5.

both the audio and the video modalities is given. This ground
truth is labeled ’1’ in the presence of speech, and ’0’ otherwise,
for each modality. The uniform audio-visual ground truth is
the "or" function between the two ground truth functions of
the separate modalities.

We evaluate the detector performance using the receiver
operating characteristic (ROC) curve as a quality measure.
ROC curve is a graphical plot that illustrates the performance
of a binary classifier system as its discrimination threshold
is varied. The curve is created by plotting the true positive
rate (detection) against the false positive rate (false alarm) at
various threshold settings.

In our experiments, the proposed AV-VAD, with the com-
bine ground truth, is compared to each of the single modality
versions, upon a ROC curve. The original ROC curve of the
detector [9] is presented in Figure 2. The video data has good
quality and the weighting parameter α is set to be 0.5.

C. Weighting Parameter Evaluation

1) Noisy frame: For noisy frames simulation, white gaus-
sian noise was added to the horizontal and vertical compo-
nents of the motion vectors, MVix and MViy, respectively.
Sereval simulations were performed, in each one the noise
had different variance, and therefore different impact on the
detection process. The link between V , the noise characteristic
parameter presented in (6), and the quality factor Q(vi),
or the weighting parameter α, was empirically found. This
connection is described at the graph presented in Figure 3,
which indicates different dependence for different values of V .
Also, a threshold value was set, so if the variance is smaller
than τ , the frame is declare as ’not noisy’, and α is set to be
0.5 accordingly.

Several experiments has been made, and for each value of
V , the optimal α in terms of the ROC was found and set. Those
discrete results were generalized for the continuous case, as
presented in Figure 3. The adaptive algorithm calculate Q(vi)

Fig. 5: The ROC curves of the detectors while adding white
gaussian noise with variance 1 and α adaptively set.

TABLE I: Experimental Results of the Adaptive Weighting
Parameter in Several Variances Values of the Noise

Var=0.1 Var=0.2 Var=0.5 Var=0.8 Var=1 Var=1.3 Var=1.5

0.5 0.447 0.329 0.303 0.253 0.182 0.133
0.5 0.446 0.332 0.288 0.263 0.150 0.088
0.5 0.431 0.319 0.292 0.222 0.153 0.067
0.5 0.439 0.335 0.291 0.233 0.113 0
0.5 0.445 0.332 0.289 0.265 0.038 0.040
0.5 0.441 0.330 0.289 0.255 0.195 0.023
0.5 0.446 0.337 0.292 0.251 0.127 0.039

and α from the range of [0, 0.5] according to the formulas
mentions in Figure 3. the two colors in the graph indicate
different link between V and α. An example for the ROC
curves of the detector containing the noisy video, with noise
variance of 1, and α set to be 0.5, can be shown in Figure 4. In
Figure 5, the ROC curves of the same detector is presented,
when the value of α is adaptively set. Comparing the two
figures, it can be seen that the proposed algorithm improve
the resulted bi-modal detector. In particular, the audio version
had outperformed the bi-modal version in low values of false
alarm, and after adjusting α, the bi-modal detector outperform
the audio version, for all possible values of false alarm rates.
The values of α from the adaptive algorithm, for numerous
variances of the noise, are summarized in table I. Note that
α is a vector in the length of 7 since the test data contains 7
speakers.

2) Global motion: The simulation of the global motion
divided into several tests: global motion in the horizontal axis,
in the vertical axis, in both horizontal and vertical and rotation
of the camera. Each test aimed at finding the influence of
each movement of the camera on the video data quality in
terms of motion vectors extraction and the voice detection
performance. For the global motion simulation, a constant
value was added to MVix and MViy for horizontal or vertical
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motion, respectively, when the value of this constant represents
the movement extent.

It was empirically found that all the simulations described
above have no influence whatsoever on the detector perfor-
mance, apart from the global motion in the horizontal axis,
which show slightly inferior results. The uninfluenced results
consistent with the logic, because the definition of the motion
vectors. Since the motion simulation is applied exactly the
same way for each macroblock in the frame and for each
frame in the video, the difference stays approximately the
same. The slightly inferior results in the horizontal direction
can be explained by the fact that most of the mouth movements
(i.e. the signal) in speech frames are in the vertical direction,
as mentioned in [13]. This work provides a three-dimensional
model of human lips motion trained from video. Since most
of the relevant data is in the vertical direction, the signal
might overcame a small values of noise added in this direction
(high SNR) so the vertical global motion is hardly affect the
detection. However, the horizontal noise added to the signal
is easily overcome the signal in this direction, which is low
to begin with.

It should be noticed that for each and every one of the global
motions simulated, including movements in every direction
and extent, the quality of the video signal remains the same
as if there was no motion whatsoever. namely, the speech
detection based on the video modality does not influenced
from global motion, hence α should set to be 0.5. Nevertheless,
one extreme and yet realistic scenario should take under
consideration in further research - large global motion of the
camera, where the speaker head gets out of the frame, thereby
making the video signal irrelevant. According to the size of
the frame, the average size of the head in it and the average
absolute values of the motion vectors, a threshold value τ
should be set, so if |MVf |avg of a certain frame is bigger
then τ , α set to be 0, and the detection is based merely on the
audio signal.

V. CONCLUSIONS
We have presented an adaptive algorithm for calculating the

weighting parameter between the audio and video signals for
audio-visual voice activity detection. The algorithm evaluates
the video signal quality based on modeling blurred unclear
frames, low resolution sensor and global motion of the camera.
Experimental results show that the proposed adaptive weight-
ing parameter improves the performance of a bi-modal detector
compared to a constant weighting parameter. The proposed
algorithm can be incorporated in any AV-VAD which employs
a weighting parameter for the two modalities.

Here, extreme scenarios, like getting out of the frame of the
speaker, were not addressed, and need to be investigated in
future work. Furthermore, the audio signal quality estimation
is also not in the scope of this work, and need to be considered
in future research.
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