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ABSTRACT

Due to the missing standardization efforts, there is a lack of pub-

lications about coordinated subjective listening tests of multiple

artificial bandwidth extension (ABE) approaches in multiple lan-

guages. Here we present the design of absolute category rating

listening tests evaluating 12 ABE variants of six approaches in mul-

tiple languages, namely in American English, Chinese, German,

and Korean. Since the amount of ABE variants caused a higher-

than-recommended length of the listening test, ABE variants were

distributed into two separate listening tests per language. The paper

focuses on the listening test design, which aimed at merging the

subjective scores of both tests and thus allows for a joint analysis of

all ABE variants under test at once. A language-dependent analysis,

evaluating ABE variants in context to the underlying coded narrow-

band speech condition showed statistical significant improvement in

English, German, and Korean for some ABE solutions.

Index Terms— listening test, ACR, artificial bandwidth exten-

sion

1. INTRODUCTION

Artificial bandwidth extension (ABE) belongs to the class of speech

enhancement algorithms and aims at improving speech quality as

well as speech intelligibility by extending a speech signal in its

acoustical bandwidth. Given an incoming narrowband (NB) speech

signal, i.e., a signal sampled at f ′

s
=8 kHz, ABE solutions estimate

and subsequently synthesize frequency components in the upper

band (UB), i.e., the frequency range 4 kHz < f ≤ 8 kHz, and thus

close up to so-called HD voice calls. HD voice stands for coded

wideband (WB) speech, i.e., speech signals sampled at fs=16 kHz

with an acoustical bandwidth up to 7 kHz. In WB speech, syllable

intelligibility rises from 90% to 98% [1], while at the same time, the

∗The author is now with Nuance Communications Canada, Inc.

perceived speech quality gains about 1.3 mean opinion score (MOS)

points [2]. However, HD voice calls require the participants of a

call to be in WB-capable mobile cells, use WB-capable handsets,

be client of a WB-capable operator (inter-operator HD voice calls

are often a problem), and the complete transmission path between

the mobile cells has also to be WB-capable [3]. Whenever at least

one of these requirements is not met, ABE solutions can serve as

fallback to maintain speech intelligibility and speech quality to a

certain degree.

Most of today’s ABE solutions divide the extension process by

means of the source-filter model into two subproblems: estimation

of a spectral envelope as well as generation of a suitable residual

signal both for higher frequency components. Besides solving these

subproblems, some ABE solutions go further and also modify the 8
kHz input signal, e.g., via equalizing [4]. Known techniques for the

estimation of a spectral envelope are for example Gaussian mixture

models (GMMs) [5], hidden Markov models (HMMs) [6–8], (deep)

artificial neural networks (NNs) [7, 9], and others. The generation

of a residual signal might be based on noise and/or impulse genera-

tion [5], modulation of the NB residual signal [6, 7, 10], and others.

For the time being, subjective listening tests are the only reliable

evaluation method for ABE solutions [11, 12], especially w.r.t. rank

order prediction of different ABE schemes. Typical subjective

evaluations in the context of ABE schemes follow testing meth-

ods, standardized in [13], namely absolute category rating (ACR),

degradation category rating (DCR), and comparison category rat-

ing (CCR). In [14] several ABE solutions were also tested in an

anonymous fashion and compared in terms of statistical reliability

to instrumental measures for speech quality prediction. The under-

lying listening test was conducted in German. In [7, 11] ACR and

subsequently CCR tests were conducted in German to evaluate the

ABE solution. Subjective listening tests of variants of a single ABE

solution were performed in three languages in [15].

This paper describes a unified ACR listening test setup, testing con-



ditions in the same manner in each of four languages, using data

from the same database, and thus ensure comparability through-

out languages and conditions under test. Technische Universität

Braunschweig and NXP Software conducted the ACR listening tests

in American English, Chinese (Mandarin), German, and Korean,

evaluating 12 variants processed from 6 different institutions or con-

sortia. In this study, we focused on WB ABE solutions that can be

implemented at the receiving side of a (mobile) telephony call.

The remainder of this paper is organized as follows: First, in Sec.

2, the listening test design is described. Subsequently, the prepro-

cessing chain to create the conditions under test is explained in Sec.

3. The ABE approaches under test are briefly described in Sec. 4.

Afterwards, in Sec. 5 the results over the different conditions per

language are shown and discussed. A conclusion is given in Sec. 6.

2. OVERVIEW OF THE TEST DESIGN

The test was prepared similarly as described in [11], following

largely ITU-T Recommendation [13] for ACR listening tests. The

test was conducted with 48 listeners in four different languages:

American English, Chinese (Mandarin), German, and Korean. For

each language, two female and two male speakers were selected

with 4 sentences each. One of these utterances per speaker was

spent for a preliminary familiarization phase. The remaining three

utterances were used in the main test. Since 12 variants of ABE so-

lutions were tested, two listening tests (LTs) were prepared, namely

LT1 and LT2, each designed to evaluate 6 ABE variants. To create

a point of reference for ABE algorithms under test, a number of

16 (= 7 NB and 9 WB) anchor conditions were included into each

test, giving in total 22 conditions per LT. The files of each LT were

further divided into three listening panels, each of them representing

a disjoint set of different files, presented in random order, while

still all conditions were included. This allowed for evaluation of

larger set of samples (12 speech files per conditions per LT) without

extending the duration of the test beyond recommendations. Age

and gender distribution for all conducted listening tests are shown

in Table 1. Mono audio files at 79 dB SPL were played through a

Roland Octa-Capture interface and listened to with a monau-

ral closed-back Sennheiser HD-25 II headphone. A proper

equalization was applied to compensate for the headphones’ fre-

quency response.

A preliminary listening test, containing 32 files selected from an-

chor conditions, was performed to provide a proper reference and

familiarize the listeners with the test procedure. The speech codecs

and ABE versions were simulating different telephone speech con-

ditions, whereas the MNRU conditions mainly served as reference

anchors to exploit the range of the ACR scale in MOS from 1 (bad)

to 5 (excellent).

3. DATA PREPROCESSING

A speech corpus recorded by Speech Ocean [16] was used, employ-

ing the same recording environment for all of the tested languages.

The corpus is sampled at 48 kHz. The preprocessing chain is de-

picted in Fig. 1. To create a point of reference for the ABE solutions

under test, 16 anchor conditions, more precisely 7 NB and 9 WB

anchor conditions were processed and subsequently became part of

every listening test. The preprocessing is based on [17].

For the 7 NB anchor conditions, first, a decimation from 48 kHz to

16 kHz by means of a high-quality (HQ) low-pass filter HQ3 was

performed. The resulting signal is then subject to the mobile station

input (MSIN) high-pass filter [18], simulating handset microphone

Language LT #Males #Females Average Age

English

1 20 4 49

2 18 6 44

1+2 38 10 46

Chinese

1 12 12 26

2 14 10 35

1+2 26 22 31

German

1 12 12 24

2 14 10 26

1+2 26 22 25

Korean

1 12 19 38

2 15 9 20

1+2 27 21 29

Table 1. Gender and age distribution of participants in each of the

listening tests (LTs).

characteristics. The signal is then decimated using another high-

quality low-pass filter HQ2 to 8 kHz and then adjusted to an active

speech level [19] of −26 dBov. Simulating a mobile NB phone call,

the intermediate result NB′ is subject to 13 bit conversion [18], en-

coding and subsequently decoding (ENC/DEC) using the adaptive

multirate narrowband (AMR-NB) speech codec [20] at 12.2 kbps

and again the 13 bit conversion [18]. Following an interpolation to

16 kHz, the result is referred to as the AMR-NB anchor condition.

In addition, NB′ is processed via the modulated noise reference unit

(MNRU) [21] with speech-to-modulated-noise power ratios of 6 dB,

12 dB, 18 dB, 24 dB, 30 dB, and ∞ dB (direct). After interpolation

to 16 kHz, this processing path leads to 6 NB-MNRU anchor condi-

tions.

For the 9 WB anchor conditions, at first a 50 Hz high-pass filter

(HP50) is applied, following a decimation by a factor of three us-

ing HQ3 and final active speech level adjustment to −26 dBov [19].

The intermediate result WB′ is then the basis for further process-

ing. For simulation of mobile HD-Voice calls, WB′ is converted to

14 bit [18], encoded and subsequent decoded by the adaptive multi-

rate wideband (AMR-WB) speech codec [22] at bitrates 8.85 kbps,

23.05 kbps, and 23.85 kbps and again converted to 14 bit represen-

tation [18]. The three resulting WB anchor conditions are referred to

as AMR-WB. In addition, WB′ is subject to MNRU processing [21]

with speech to modulated noise power ratios of 5 dB, 15 dB, 25 dB,

35 dB, 45 dB, and ∞ dB (direct), leading to 6 WB-MNRU anchor

conditions.

The ABE solutions under test are applied subsequently to the AMR-

NB condition sampled at 8 kHz. Finally, all files are postprocessed

by P.341 filtering [18], i.e., limited to an acoustical bandwidth of

0.05 . . . 7 kHz and interpolated to 48 kHz sampling rate.

4. ABE APPROACHES

In this section, the 6 ABE approaches under test are briefly de-

scribed. All ABE approaches are based on the source-filter model

for speech production. Some of the institutions or consortia partici-

pated with several ABE schemes or parameter settings, resulting in

a total of 12 ABE conditions. The contributing parters were ask to

use blind ABE schemes with a maximum of 30 ms algorithmic de-

lay. Please note that the approaches are ordered alphabetically after

the contributing institutions and are in no relation to the order of the

later presented results.
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Fig. 1. Block diagram of the data preprocessing steps; ABE conditions are processed subsequently to the AMR-NB condition.

4.1. Koç University, Istanbul

The spectral envelope is estimated along the Viterbi path of the NB

spectral envelope with minimum mean square error estimators [8].

The excitation extension is done using synchronous overlap and add

on the NB residual spectrum [23].

4.2. McGill University, Montreal

The ABE scheme is based on [5]. A GMM models the spectral en-

velope while the UB excitation signal is obtained by generation of

white Gaussian noise. In one variant [24], speech temporal informa-

tion is accounted for by incorporating delta features into the feature

vectors. In a second variant [25], temporal information is accounted

for by modeling the high-dimensional distributions of feature vectors

via a temporally-extended GMM.

4.3. Microsoft Phone Technologies, Tampere

The ABE scheme is based on [9]. An excitation signal is generated

from the linear prediction residual of the NB input signal by spectral

folding. An NN is used to estimate the spectral envelope of the UB

from input features, and the spectrum is shaped with a time-domain

filter bank. An additional variant with a more conservative extension

was also provided.

4.4. RWTH Aachen University

The ABE algorithm is based on [10, 26]. The excitation is extracted

from the NB signal, spectrally flattened and copied to the highband

with some additive white noise. The spectral envelope applied after-

wards is estimated with the help of an HMM model with 128 states

and 16 Gaussian mixture components per state based on zero cross-

ing rate and 13 MFCC features. A quadrature mirror filter synthesis

filterbank is used to combine NB and artificial UB to the final WB

signal.

4.5. Technion, Haifa

The ABE approach is based on [4]. An excitation signal is generated

using a simple spectral copying technique. The spectral envelope

is estimated by means of a phonetic and speaker dependent statis-

tical approach. Speech phoneme information is extracted using an

HMM. Speaker vocal tract shape information is extracted by a code-

book search. Further processing of the estimated vocal tract shape

includes vocal tract shape iterative tuning. The NB signal is empha-

sized using an equalizer filter.

4.6. Technische Universität Braunschweig / NXP Software

The ABE approach is based on [27]. Following the source-filter

model, the spectral envelope is estimated using an HMM, while

the NB residual is extended applying spectral folding. HMM states

are defined in favor of critical phonemes to reduce misrepresenta-

tion [28]. Additional classifiers are employed to adaptively correct

overestimations [7, 11].

5. RESULTS

It is not recommended to perform a language-independent analy-

sis of the obtained results, since merging of listening tests would

change statistical properties, e.g., rank order of the different con-

ditions. However, the overall test is designed to allow mapping of

listening tests LT1 and LT2 within a language and thus enabling

language-dependent comparisons of all conditions at once. This as-

sumption was verified via hypothesis testing [31] of anchor condi-

tions checking for equality throughout both tests. Therefore, the

subjective votes of anchor conditions are put together and an anchor-

condition-based and language-dependent mean is calculated. After-

wards, linear regression coefficients for a mapping of the anchor con-

ditions towards the former mentioned language-dependent means are

calculated and applied to the scores of the ABE conditions. The fol-

lowing language-dependent analysis is based on the results of the

here described mapping process, merging LT1 and LT2 into one sin-

gle listening test per language, LT1+2.

Table 2 presents condition-based means for every language, af-

ter they were subject to linear regression. Clearly, both, NB- and

WB-MNRU conditions were scored proportional to the speech-to-

modulated-noise-power ratio of the respective condition thus show-

ing to which extent the MOS scale was used. The WB-MNRU at

∞ dB condition scored over all languages the highest. Interestingly,

the gap between NB-MNRU at ∞ dB and WB-MNRU at ∞ dB

has a high language dependency. On the one hand, German partici-

pants differentiate these two conditions by about 1.38 MOS points,

thus substantiate the results obtained in [2]. On the other hand, Chi-

nese participants scored the WB-MNRU at ∞ dB condition only

0.3 MOS points higher than the respective NB condition. The gaps

for English and Korean are in between 0.53 and 0.95 MOS points,

respectively. Compared to for example American English, Chinese

contains a lower amount of fricative sounds [29, 30], which have

most of their energy in higher frequencies, and thus could be one

of the explanations of the rather small noticeable difference between

NB and WB in this language. The coded conditions AMR-NB and

AMR-WB are also scored plausibly, since higher bit rate and higher

acoustical bandwidth was rewarded by the participants. Interest-

ingly, AMR-NB and AMR-WB at lowest bit rate scored similarly in

Chinese. For ABE and AMR-NB conditions, Table 2 also shows the



Condition Chinese English German Korean

NB-MNRU

6 dB 1.15 1.08 1.06 1.09

12 dB 1.63 1.55 1.40 1.32

18 dB 2.21 2.16 1.89 1.84

24 dB 2.82 2.64 2.29 2.42

30 dB 3.36 3.24 2.93 2.96

∞ dB 4.12 3.76 3.31 3.54

WB-MNRU

5 dB 1.13 1.10 1.03 1.03

15 dB 1.64 1.67 1.56 1.54

25 dB 2.58 2.66 2.44 2.44

35 dB 3.65 3.64 3.58 3.57

45 dB 4.23 4.20 4.57 4.29

∞ dB 4.43 4.29 4.70 4.49

AMR-NB 3.98 (07) 3.48 (09) 3.07 (07) 3.37 (08)

ABE01 4.11 (02) 3.62 (04) 3.30 (04) 3.52 (06)

ABE02 4.16 (01) 3.78 (03) 3.42 (01) 3.75 (01)

ABE03 4.04 (04) 3.78 (02) 3.34 (03) 3.64 (02)

ABE04 3.99 (05) 3.61 (05) 3.21 (06) 3.58 (03)

ABE05 2.96 (13) 3.04 (11) 2.53 (11) 3.09 (11)

ABE06 2.96 (12) 2.96 (12) 2.53 (12) 2.84 (12)

ABE07 4.08 (03) 3.57 (06) 3.41 (02) 3.53 (04)

ABE08 3.98 (06) 3.82 (01) 3.27 (05) 3.48 (07)

ABE09 3.71 (09) 3.56 (07) 3.05 (08) 3.53 (04)

ABE10 3.47 (10) 3.16 (10) 2.69 (10) 3.32 (09)

ABE11 3.72 (08) 3.50 (08) 2.75 (09) 3.32 (09)

ABE12 3.05 (11) 2.87 (13) 2.48 (13) 2.63 (13)

AMR-WB

8.85 kbps 3.97 3.90 3.98 3.91

23.05 kbps 4.37 4.22 4.44 4.41

23.85 kbps 4.27 4.12 4.47 4.27

Table 2. Language-dependent results of listening tests after linear

regression of LT1 and LT2 towards anchor conditions mean result-

ing in LT1+2.; (..) shows the rank order of ABE and AMR-NB

conditions.

rank order of the condition-based mean opinion scores. In general,

ABE solutions are not perceived similarly across languages. While

the rank of AMR-NB is roughly in the center of the ABE ranks, the

rank of certain ABE solutions varies quite a lot. ABE08 as an exam-

ple is the best ABE variant in American English, however, in Korean

the same ABE approach is ranked at position 7.

To analyze the question, whether an ABE solution improves the

underlying AMR-NB condition, a simple comparison of condition-

based mean values is not sufficient. Instead, a pair-wise comparison

of the condition-based means of all ABE conditions vs. AMR-NB

condition using two-sample t-test [31] was performed. More de-

tailed, for each of the pair-wise comparisons, the null hypothesis

H0 : µ1 = µ2 that both condition means µ1, µ2 are equal to each

other is tested against the hypothesis H1 :µ1 6=µ2 that the means are

different. The resulting p-values are shown in Table 3. The higher

the p-values, the more likely is the null hypothesis. The following

conclusions assume that statistical significance is given for p-values

< 0.05.

First of all, none of the ABE approaches under test can consistently

improve the AMR-NB in all languages. Especially in Chinese, ABE

variants under test could not improve significantly vs. the AMR-NB

condition. Furthermore, half of the tested ABE solutions even de-

Condition p-value for H0 true and H1 false

µ1 µ2 Chinese English German Korean

ABE01

A
M

R
-N

B

0.49 0.26 <0.05 (+) 0.37

ABE02 0.19 <0.05 (+) <0.01 (+) <0.01 (+)
ABE03 0.92 <0.05 (+) <0.05 (+) 0.08

ABE04 0.71 0.30 0.34 0.13

ABE05 <0.01 (−) <0.01 (−) <0.01 (−) <0.05 (−)
ABE06 <0.01 (−) <0.01 (−) <0.01 (−) <0.01 (−)
ABE07 0.17 0.49 <0.01 (+) 0.10

ABE08 0.75 <0.01 (+) <0.05 (+) 0.22

ABE09 <0.01 (−) 0.51 0.84 0.09

ABE10 <0.01 (−) <0.05 (−) <0.01 (−) 0.86

ABE11 <0.05 (−) 0.80 <0.01 (−) 0.84

ABE12 <0.01 (−) <0.01 (−) <0.01 (−) <0.01 (−)

Table 3. Results of the two-sample t-test for null hypothesis test:

ABE solutions vs. AMR-NB; (+): ABE condition mean is higher

than AMR-NB, (−): vice versa.

graded compared to the AMR-NB condition. This might also be

explained by the former mentioned smaller difference between NB

and WB speech w.r.t. the language and the resulting lack of per-

ceived higher acoustical bandwidth. At the same time, artifacts in-

troduced by ABE solutions remain and cause a degradation of sub-

jective speech quality. For Korean, only ABE02 could improve the

coded NB condition. Furthermore, 8 out of 12 ABE variants do

not show a significant difference compared to AMR-NB and three

ABE variants even fail the null hypothesis with statistical signifi-

cance. Note that it may be the case that a substantial fraction of ABE

variants was not trained or tuned with Chinese or Korean speech ma-

terial and thus failed to improve quality in those languages.

In English, ABE solutions ABE02, ABE03, and ABE08 show signif-

icant improvement over the AMR-NB condition. The same is valid

for the first three ABE conditions as well as ABE07 and ABE08 in

German.

If an ABE solution is significantly better than AMR-NB, how much

percent of the gap between AMR-NB and AMR-WB at 23.05 kbps

could be filled? For this evaluation, the condition-based mean of

the ABE solution is subtracted by the corresponding mean of the

AMR-NB condition and then divided by the MOS distance between

the AMR-NB and AMR-WB conditions. In English, ABE02 and

ABE03 filled the gap by 40% while ABE08 closes the gap by 46%.

For German, ABE08, ABE01, ABE03, ABE07, and ABE02 could fill

the gap by 15%, 17%, 20%, 24%, and 25%, respectively. In Korean,

ABE02 closes the gap by 36%.

6. CONCLUSIONS

In this work, listening tests in American English, Chinese, German,

and Korean were conducted, evaluating 12 variants of artificial band-

width extension (ABE) algorithms processed by six institutions and

consortia. Due to the high amount of conditions under test, the lis-

tening tests are split in two separate tests per language. A care-

fully chosen listening test design enables a merge of scores from

both listening tests via linear regression and thus makes a language-

dependent analysis of all ABE variants possible at once.

It could be shown that some ABE solutions are able to improve the

underlying coded narrowband speech signal with statistical signifi-

cance in English, German, and Korean. In these languages it was

possible to close the gap between coded narrowband and wideband

speech by up to 46%, 25%, and 36%, respectively.
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