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ABSTRACT

Recently we have presented a novel approach for transient noise
reduction that relies on non-local (NL) filtering. In this paper, we
modify and extend our approach to support clustering and suppres-
sion of a few transient noise types simultaneously, by introducing
two novel concepts. We observe that voiced speech spectral com-
ponents are slowly varying compared to transient noise. Thus, by
applying an algorithm for noise power spectral density (PSD) esti-
mation, configured to track faster variations than pseudo-stationary
noise, the PSD of speech components may be estimated. In addition,
we utilize diffusion maps to embed the measurements into a new do-
main. We obtain a new representation which enables clustering of
different transient noise types. The new representation is incorpo-
rated into a NL filter as a better affinity metric for averaging over
transient instances. Experimental results show that the proposed al-
gorithm enables clustering and suppression of multiple transient in-
terferences.

Index Terms— Speech enhancement, speech processing, acous-
tic noise, impulse noise, transient noise.

1. INTRODUCTION

Recently [1] [2] we have presented a novel approach for transient
noise reduction that relies on non-local (NL) filtering [3]. Tran-
sient noise includes noise originating from engines, keyboard typ-
ing, construction operations, bells, knocking, rings, hammering, etc.
The algorithm presented in [1] handles speech signals contaminated
with repeating transient noise events, utilizing the fact that a distinct
pattern appears multiple times. Specifically, the locations of the re-
peating pattern are identified, and the transient noise is extracted by
averaging over all of these instances.

A fundamental part of the algorithm in [1] is the distinction be-
tween speech and transients. In order to enhance this difference,
the measurements are whitened using linear prediction coding. In
each short time frame, the linear prediction coefficients (LPC) of the
speech are estimated and used to whiten the signal in the frame. As
a result, speech components are whitened, whereas transients main-
tain their impulsive nature. Unfortunately, this preprocessing suf-
fers from two limitations. First, estimating the LPC from the noisy
measurement might be a difficult task yielding inaccurate estimation.
Second, each transient is altered differently as different coefficients
are estimated in each frame. Consequently, the whitening process
may exclude the assumption that the same pattern appears multiple
times.

In this paper, we propose a different, more robust, approach
to distinguish between transients and speech. Common speech en-
hancement algorithms include a noise power spectral density (PSD)
estimation component, which exploits the fact that the spectrum of
environmental noise is usually slowly varying with time compared
to that of speech. Hence, the noise PSD is estimated by smoothing
the signal power and tracking only slow variations while neglect-
ing fast energy bursts. We utilize the same concept for “transient
enhancement”. We observe that voiced speech spectral components
are slowly varying compared to transient noises. Thus, by applying
a common algorithm for noise PSD estimation, configured to track
faster variations than pseudo-stationary noise, the speech PSD may
be estimated from measurements of the speech signal contaminated
by transients. We note that exploiting the rate of change of the signal
was previously introduced in RASTA [9], where bandpass filtering
of the short-term power spectrum is employed to suppress slowly
and rapidly varying interferences.

In addition, the proposed algorithm enables clustering and sup-
pression of a few transient noise types. We utilize diffusion maps
[4] to embed the measurements into a new space and obtain a new
representation. The Euclidean distance in the diffusion maps space,
which is termed diffusion distance, is a robust perceptual metric for
comparison. In particular, it enables clustering of different transient
noise types. Moreover, when incorporated into the NL filter, it pro-
vides a better affinity metric for averaging over transient instances.

This paper is organized as follows. In Section 2, we formulate
the problem. In Section 3, the algorithm for clustering and suppres-
sion of transient noise is presented. Finally, in Section 4, we show
experimental results that demonstrate the advantages of the proposed
method.

2. PROBLEM FORMULATION

Let y(n) be a measured speech signal corrupted by L additive tran-
sient noise types

y(n) = s(n) +
L∑

l=1

dl(n) (1)

where s(n) is a clean speech signal and dl(n) is the lth contaminat-
ing transient noise type.

The transient noise is modeled as the output of a filter excited by
an amplitude-modulated random binary sequence [5], given by

dl(n) = hl(n) ∗
(
bl(n)vl(n)

)
(2)
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where the impulse response hl(n) models the duration and shape
of the events of the lth transient noise type, bl(n) ∈ {0, 1} is a
binary valued random sequence of time locations of transient noise
events of type l, and vl(n) is a continuous valued random process of
transient amplitudes. In this work, we use a fixed impulse response,
which implies that the transient events of each type have the same
spectral features up to random amplitudes. This assumption leads
to the observation that the same pattern appears in the measurement
several times, and is of a key importance in the proposed algorithm.

We apply the short-time Fourier transform (STFT) to convey the
spectral difference between the transients and the speech. We use
time-frames of length N , and denote the number of frames in the
finite observable interval by M . Let yp,k be the STFT of y(n) in
time frame p and frequency bin k. Using (1), it can be written as

yp,k = sp,k +
L∑

l=1

dlp,k (3)

where sp,k and dlp,k are the STFT of s(n) and dl(n) respectively.
We assume that in a single short time frame no more than one

single transient exists (of any type). Accordingly, we define H0 to
be the set of time frame indices without a transient, and Hl to be the
set of time frame indices consisting of the lth transient noise type.

3. PROPOSED ALGORITHM

3.1. Transient Noise Enhancement

We adopt the concept commonly used for PSD estimation of
(pseudo) stationary noise. A noise estimate is obtained by averaging
over past spectral power values, and temporal smoothing is carried
out to reduce fluctuations of speech segments. We observe that as
stationary noise is slowly varying compared to speech, speech is
slowly varying compared to transient noise. Thus, a speech estimate
might be obtained by short-term averaging over past spectral power
values, and the temporal smoothing reduces the abrupt transients.

Here we propose to use the optimally modified log spectral am-
plitude (OM-LSA) method [6] with fast recursion to enhance the
transient noise and suppress the speech. We configure the minima
controlled recursive averaging (MCRA) algorithm [7], which is em-
ployed in the OM-LSA for estimating the noise PSD, to track fast
variations. We use very short time frames of length 16ms in order
to reduce the variations of the speech between sequential frames. In
addition, the following temporal smoothing is carried out

φ̂s(p, k) = αφ̂s(p− 1, k) + (1− α)|yp,k|
2 (4)

where φ̂s(p, k) is the PSD estimate of the speech, and α is a recur-
sion parameter. We choose a relatively small recursion parameter
α = 0.5 to enable quick tracking of speech components. However,
the recursion parameter should not be too small to discard abrupt
changes of transients.

The described modification enables to capture most of the
speech parts, but sudden changes characterizing speech phonemes
onsets are overlooked. Phoneme onset identification is obtained
using two sliding windows for the speech PSD estimation. The first
window is causal, and used to detect the minimum power in previ-
ous frames, as described in the original algorithm [7]. The second
window is anti-causal, and used to detect the minimum power in
future frames. We note that the window should be shorter than a
typical speech phoneme, but longer than a typical transient. The
PSD estimate is taken as the maximum of the two minima detected

in the two windows. Now, at the beginning of a speech phoneme, the
minimum in the causal window is low, conveying the power level
of the background noise before the phoneme. On the other hand,
the minimum in the anti-causal window is high, representing the
power level of the phoneme (assuming the window is shorter than
the phoneme). Consequently, taking the maximum of the two min-
ima yields the desired estimate of the power level of the phoneme. It
is worthwhile noting that a transient instance is not captured in this
process. Since both windows are longer than a transient, the minima
in such windows must be the power level of the background signal
(either speech or background noise) before or after the transient.

3.2. Transient Noise Clustering using Diffusion Maps

Let ỹ(n) and ỹp,k be the measured signal in the time and the STFT
domains after the application of the OM-LSA algorithm for the tran-
sient noise enhancement, as described in Section 3.1. The STFT
coefficients of ỹ(n) from all frequency bins of each time frame p are
collected into a vector ỹp

ỹp = [ỹp,0, . . . , ỹp,N−1]
T , p = 1, . . . ,M. (5)

We define an affinity metric k(ỹp, ỹl) between pairs of such vectors
using the following Gaussian kernel

k (ỹp, ỹl) = exp
{
−‖φỹ(p)− φỹ(l)‖

2/2σ2
}

(6)

where σ2 is the variance of the Gaussian kernel which determines
the scale of the affinity metric, and φỹ(p) is a vector of length N ,
given by

φỹ(p) = [φỹ(p, 0), . . . , φỹ(p,N − 1)]T (7)

where φỹ(p, k) is the short-time PSD of ỹ(n) in time-frame p and
frequency bin k, defined by φỹ(p, k) = E

{
1

N
ỹp,kỹ

∗
p,k

}
, where

E{·} is an expectation. For more details regarding this specific
choice of a kernel see [1].

We view the vectors {ỹp}
M
p=1 as nodes of an undirected sym-

metric graph. Two nodes ỹp and ỹl are connected by an edge with
weight k(ỹp, ỹl), that corresponds to the affinity between ỹp and ỹl.
We continue with the construction of a random-walk on the graph
nodes by normalizing the kernel k as

p(ỹp, ỹl) = k(ỹp, ỹl)/d(ỹp) (8)

where d(ỹp) =
∑M

l=1
k(ỹp, ỹl). Consequently, p(ỹp, ỹl) repre-

sents the probability of transition in a single step from node ỹp to
node ỹl. Similarly, let pt(ỹp, ỹl) be the probability of transition in
t steps from node ỹp to node ỹl. Let K denote the matrix corre-
sponding to the kernel function k, and let P = D−1K be the matrix
corresponding to the function p, where D is a diagonal matrix with
Dpp = d(ỹp). Accordingly, P t is the matrix corresponding to the
function pt.

Results from spectral theory [8] can be employed to describe P ,
enabling to study the geometric structure of {ỹp} in a compact and
efficient way. It can be shown that P has a complete sequence of left
and right eigenvectors {ϕj , ψj} and positive eigenvalues, written in
a descending order 1 = λ0 > λ1 ≥ λ2 ≥ . . ., satisfying Pψj =
λjϕj .

The construction of the random walk leads to a definition of a
new affinity metric between any two vectors [4]

D2

t (ỹp, ỹl) = ‖pt(ỹp, ·)− pt(ỹl, ·)‖
2

ϕ0

=
M∑
q=1

(pt(ỹp, ỹq)− pt(ỹl, ỹq))
2 /ϕ0(q)

(9)

5085



for any integer t. This metric is termed diffusion distance as it relates
to the evolution of the transition probability distribution pt(ỹp, ỹl).
It enables to describe the relationship between pairs of vectors in
terms of their graph connectivity. Consequently, the main advantage
of the diffusion distance is that local structures and rules of transi-
tions are integrated together into a global metric. In recent years,
this metric was shown to be very useful in various applications from
different fields [10].

We use the right eigenvectors of the transition matrix P to obtain
a new data-driven description of the M vectors {ỹp} via a family of
mappings that are termed diffusion maps [4]. Let Ψt(ỹp) be the
diffusion mappings of the M vectors {ỹp} into a Euclidean space
R

�, defined as

Ψt(ỹp) =
[
λt
1ψ1(p), · · · , λ

t
�ψ�(p)

]T
(10)

where � is the new space dimensionality ranging between 1 and M−
1. We note that a fast decay of {λj} may enable dimensionality
reduction, as coordinates in (10) become negligible for large �.

It can be shown [4] that the diffusion distance (9) is equal to
the Euclidean distance in the diffusion maps space when using all
� = M − 1 eigenvectors. This result provides a justification for
using the Euclidean distance in the new space for spectral clustering
purposes. In particular, since the spectrum is fast decaying for a large
enough t, the diffusion distance can be well approximated by only
the first few � eigenvectors, yielding efficient comparisons.

In Section 4, we show that embedding the vectors into the dif-
fusion maps space naturally organizes the data into separate clusters
of speech and transient noises.

3.3. Transient Noise PSD Estimation using Diffusion Filters

Similarly to (6), we now define a new Gaussian kernel k̄ based on
diffusion distance

k̄ (ỹp, ỹl) = exp
{
−‖Ψt(ỹp)−Ψt(ỹl)‖

2/2σ̄2
}

(11)

and, similarly to (8), construct a corresponding random-walk to ob-
tain a new transition probability function p̄(ỹp, ỹl). We denote by
K̄ and P̄ the matrices corresponding to the new kernel and transi-
tion probability functions. We emphasize that unlike the kernel (6)
used in [1] which relies on the Euclidean distance, we use here a
kernel that relies on diffusion distance. The use of a diffusion dis-
tance conveys the capability to distinguish between different types of
transients, and hence, the proposed algorithm enables handling few
transient types simultaneously.

Let Ỹ be a matrix consisting of the set of vectors {ỹp}, Ỹ =

[ỹ1, ỹ2, ...ỹM ]T . Advancing the random-walk on this set a sin-
gle step forward can be written as P̄ Ỹ . Similarly, propagating the
random-walk t steps forward corresponds to raising P̄ to the power
of t and applying it on Ỹ as P̄ tỸ . A single step of the random walk
on the graph is given by1

[
P̄ Ỹ

]
p
=

M∑
l=1

p̄(ỹp, ỹl)ỹl (12)

and can be interpreted as averaging over similar time frames accord-
ing to p̄. Since the diffusion distance leads to clustering of frames
into classes of speech and transient noises, the random-walk itera-
tion approximately averages over all the frames from the same class,
i.e. [

P̄ Ỹ
]
p
≈

∑
l∈Hi

p̄(ỹp, ỹl)ỹl, ỹp ∈ Hi. (13)

1[X]i extracts the ith row of the matrix X .
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Fig. 1. Scatter plot of the diffusion maps embedding Ψ3. Left: scat-
ter plot of the 1st and 5th coordinates. Right: scatter plot of the 6th
and 5th coordinates.
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Fig. 2. Signal spectrograms. Top: the noisy measurement. Bottom:
the enhanced speech obtain by the proposed algorithm.

As a result, since each transient type has the same spectral pattern
(2), the transient instances are averaged together and enhanced. On
the other hand, the “random” speech is averaged non-coherently, and
therefore suppressed. After a few random-walk iterations, the in-
stances of the different transient types may be extracted from the
measurements, and their PSD can be estimated.

3.4. Transient Noise Suppression

The last part of the algorithm is similar to [1]. For enhancing the
speech, we use an OM-LSA version with a modified noise PSD es-
timate. After a few iterations of the diffusion filter (13) we obtain
an estimate of the PSD of the transient noises. Thus, we adjust the
calculation of the optimal spectral gain to rely on a sum of the tran-
sient noises and the stationary noise PSD estimates. Since the cal-
culation of the optimal spectral gain function is now controlled by
both the stationary and transient noises, additional suppression of
the transients is attainable. For more details regarding the optimal
gain function derivation and estimation of the speech presence prob-
ability and the noise spectrum, we refer the readers to [6] and the
references therein.

4. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed method.
In our experiment we use recorded speech signals and transient
noises, sampled at 16 KHz. The various recorded transient noise
types are taken from [11]. We use STFT frames of 256 samples. The
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Table 1. Enhancement Evaluation in Transient Occurrence Periods.

Transient SNR LSD
Noise Improvement [dB] Improvement [dB]

Metronome & 13.4 6.8
Household Noise
Metronome & 12.9 6.6
Kitchen Pocks
Door Knocks & 11.4 6.5
Household Noise

corresponding time frame length is 16ms, which is longer than the
duration of the tested transients (approximately 10ms). In order to
compare different noise signals of various durations and shapes, we
maintain a constant value of the noise maximum amplitude, which
equals to the maximum amplitude of the speech. For the diffusion
maps embedding we use � = 10 dimensions and the number of dif-
fusion steps is t = 3. These values were chosen since in empirical
testing they yielded the best performance.

Measurements of 10s length are constructed according to (1),
with additional computer-generated Gaussian white noise with SNR
level of 20dB. In this experiment, the two corrupting transient noises
are of a metronome and household sounds. The measurements con-
sist of 20 transients of each type.

Figure 1 illustrates the diffusion maps embedding according to
(10). Each point in Fig. 1 represents the embedding of a single vec-
tor ỹp in R

2. The frame content (speech, metronome, and household
sounds) appears in different shapes (round, rectangular, triangular).
In Fig. 1 (Left) we show a scatter plot of the 1st and 5th coordinates
of the diffusion map (10) of the vectors, and in Fig. 1 (Right) we
show a scatter plot of the 6th and 5th coordinates of the diffusion
map of the vectors. We observe a clear clustering of the signals.
However, when using merely two coordinates, we see some overlaps
and outliers, i.e. points from one type in the area of another. Our
empirical testing show that by using � = 10 dimensions, the diffu-
sion maps embedding provides adequate separation of the points and
minimal overlaps.

In Fig. 2 we show the spectrograms of part of the noisy mea-
surement, and the denoised speech using the proposed algorithm.
We observe in Fig. 2 (Bottom) that the proposed estimator achieves
reduction of both transient types, while imposing very low distor-
tion. This figure illustrates the suppression of the transients and the
preservation of the speech. The results are evaluated using two com-
mon objective measures - signal to noise ration (SNR) and log spec-
tral distortion (LSD), which are calculated only in periods with tran-
sients. The obtained SNR improvement is 13.4dB and the obtained
LSD improvement is 6.8dB.

The described experiment was repeated with different pairs of
transient noises taken from [11]. The obtained results are summa-
rized in Table 1. We clearly observe that the proposed algorithm
achieve significant speech enhancement in periods of transient in-
terference. These results emphasize the advantage of the proposed
algorithm in obtaining good transient noise reduction, while preserv-
ing speech components, even under the adverse conditions created
by the presence of transient noise events. Moreover, they demon-
strate the robustness of the algorithm to different transient types.

In addition, we tested the algorithm with a single type of tran-
sients similarly to [1] as well. The obtained results using the pro-
posed algorithm are similar to the results obtain by the algorithm
in [1]. Therefore, we did not present them in this paper, as they

appear in [1] and [2]. However, we emphasize that the algorithm
proposed in this paper enables a similar improvement in more chal-
lenging scenarios which include more than a single type of transient
interference.

5. CONCLUSIONS

We introduced an algorithm for clustering and suppression of tran-
sient noises in speech signals. The proposed algorithm consists of
three filters in cascade: a preprocessing OM-LSA for enhancing
the transients, non-local filter for estimating the transients PSD, and
OM-LSA for suppressing the transients and enhancing the speech.
Here, we improve and extend an existing work by introducing two
new concepts. The first relies on the observation that speech is
slowly varying compared to transients, as (pseudo) stationary noise
is slowly varying compared to speech. Hence, we propose to employ
a stationary noise PSD estimation algorithm, equipped with two slid-
ing windows and configured to track rapid variations, for estimating
the speech PSD. The second concept is based on embedding the orig-
inal measurements in a new space. We employ diffusion maps, which
is a state-of-the-art method for manifold learning and dimensionality
reduction, to obtain clustering of the transients and a robust affinity
metric. The clustering capability of this approach was demonstrated,
and a more comprehensive study will be conducted in future work.
Experimental results show that the proposed algorithm can success-
fully handle simultaneous suppression of several transients, while
maintaining the speech undistorted.
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