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ABSTRACT

A randomly distributed microphone array is considered in this work.
In many applications exact design of the array is impractical. The
performance of these arrays, characterized by a large number of mi-
crophones deployed in vast areas, cannot be analyzed by traditional
deterministic methods. We therefore derive a novel statistical model
for performance analysis of the MWF beamformer. We consider the
scenario of one desired source and one interfering source arriving
from the far-field and impinging on a uniformly distributed linear ar-
ray. A theoretical model for the MMSE is developed and verified by
simulations. The applicability of the proposed statistical model for
speech signals is discussed.

Index Terms— Random arrays, Beamforming

1. INTRODUCTION

The concept of distributed sensor networks is becoming more re-
alistic with technology advances in the fields of nano-technology,
micro electro-mechanic systems (MEMS) and communication. A
distributed sensor network comprises scattered nodes which are au-
tonomous, self-powered modules consisting of sensors, actuators
and a transceiver. Their layout and connectivity graph are usually
random and dynamic. Distributed sensor networks have a broad
range of applications which can be categorized in ecology, environ-
ment monitoring, medical, security and surveillance.

Consider the border security application as a test case. In this
application, microphones are deployed along the border and are used
for detecting intruders, and for eavesdropping. The desired signal is
usually contaminated by environmental noises necessitating the use
of noise reduction techniques. The limited performance of single
channel noise reduction algorithms, and the inherent multiple nodes
structure call upon incorporating array processing algorithms.

Van Veen and Buckley [1] analyzed the performance of various
beamformers. Specifically, they investigated the influence of physi-
cal properties such as the array aperture and the sensors spacing on
the beam-pattern. They showed that data dependent beamformers
such as the multi-channel Wiener filter (MWF) and the minimum
variance distortionless response (MVDR) beamformer outperform
data independent beamformers as the delay and sum (DS) beam-
former. Doclo and Moonen [2] applied the MWF beamformer for
speech processing, and proposed practical methods for estimating
the required statistics. Both of these contributions analyze proper-
ties of the beamformers by utilizing the array layout. As we consider
random arrays in the current work, such an analysis is inadequate.

Incorporating statistical models into the sensors’ spatial distribu-
tion was proposed in the past by Lo [3], yielding better understand-
ing of the beampattern properties (e.g. directivity, beam-width and
sidelobe level) of a simple DS beamformer applied in a linear array.
Lo treated the array properties as random variables (RVs), which are
functions of the random array constellation and of the sources con-
figuration. Ochiai et al. [4], and Ahmed and Vorobyov [5] extended
the discussion, and examined the simple DS beamformer with pla-
nar random arrays in a three dimensional space. Jan and Flanagan [6]
proposed to use a data dependent matched filter beamformer in a dis-
tributed microphone array, and presented its performance in a rever-
berant environment. Yet, no theoretical analysis on the performance
of data dependent beamformers for random layouts has been made
thus far.

In the current contribution a statistical model for the perfor-
mance of the MWF beamformer is derived for a randomly located
linear microphone array in a typical speech enhancement scenario.
As stated earlier, the MWF is considered here since data-dependent
beamformers are more suitable to speech processing than their data-
independent counterparts [2]. We treat the scenario of a coher-
ent wide-band desired source and a coherent wide-band interfering
source arriving from the far-field and impinging on the microphone
array, in a non-reverberant environment. Other scenarios can be
treated in a similar fashion.

In Sec. 2, the problem is formulated. In Sec. 3, a formula for
the minimum mean squared error (MMSE) of the MWF, given the
microphones locations, is derived. Then, in Secs. 4 and 5 the statis-
tics of the MMSE cost function is analyzed. The derived theoret-
ical models are verified in Sec. 6. Aspects of applying the MWF
in randomly distributed microphone arrays to speech processing are
discussed in Sec. 7.

2. PROBLEM FORMULATION

Consider a coherent wideband desired source and a coherent wide-
band interfering source impinging on a linear array of randomly
spaced microphones from the far-field in a reverberant-free environ-
ment. The array is assumed to comprise M uniformly distributed
microphones in the range

[−Δ
2
, Δ

2

]
, where Δ is the array aperture.

The microphones locations are denoted by x1, . . . , xM . In the short
time Fourier transform (STFT) domain, the desired source is denoted
by sd(�, k), and the interfering source is denoted by si(�, k), where
� is the frame index, and k is the frequency index. The analysis win-
dow length is denoted by NDFT. For simplicity, the desired source is
assumed to arrive from the broadside. The angle between the inter-
fering and the desired sources is denoted by θi. The received signals
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are denoted in vector notation by:

z(�, k) =
√
Mhd(�, k)sd(�, k) +

√
Mhi(�, k)si(�, k) + u(�, k)

(1)

where hd(�, k) and hi(�, k) are the normalized acoustic transfer
functions (ATFs) relating the desired and interfering sources and the
microphones, respectively, and u(�, k) is a spatially-white sensors
noise. The kth wavelength corresponding to the kth frequency index
is λk = 2πc

fs

NDFT
k

where fs is the sampling frequency and c is the
sound velocity.

The desired and interfering ATFs are assumed time-invariant and
are given by:

hd(�, k) =
1√
M

⎡
⎢⎣ 1 · · · 1︸ ︷︷ ︸

M

⎤
⎥⎦

T

(2a)

hi(�, k) =
1√
M

[
e
−jξi

x1
λk · · · e

−jξi
xM
λk

]T
(2b)

where ξi = 2π sin (θi). Note that by this notation the phase of both
the desired source and of the interfering source is assumed to be 0
at the origin (x = 0). Note also that unlike the common notation,
the ATFs in our work are normalized. For brevity, the frequency
index is omitted and only the kth frequency index is considered. The
same analysis is applicable to each frequency bin. Define the total
interference by v(�) =

√
Mhisi(�) + u(�). The second moments

of the received signals are denoted by:

Φzz = Mσ2
dhdhd

† +Φvv (3)

where

Φvv = Mσ2
i hihi

† + σ2
uI (4)

is the covariance matrix of the total interference, σ2
d, σ

2
i , σ

2
u are the

spectra in the kth frequency bin of the desired source, the interfering
source and the microphone noise, respectively, and I is the M ×M
identity matrix. The goal of the MWF is to estimate a delayed ver-
sion of the desired signal in the MMSE sense. Here, the desired
signal is defined by the desired source component at the first micro-
phone:

d(�) =
√
Mhd,1sd(�). (5)

The output of the beamformer w is denoted by yo(�) = w†z(�).

3. MSE ANALYSIS GIVEN THE MICROPHONE
LOCATIONS

As the microphone locations are random, the corresponding MWF
and its corresponding MMSE are also RVs. Their statistics is an-
alyzed in the following sections. In this section the mean squared
error (MSE) of the MWF is analyzed for a given set of microphone
locations. The MWF is given by:

wMWF = Φ−1
zz φzd (6)

where

φzd = E [z(�)d(�)∗] (7)

is the cross-correlation vector between the received signals and the
desired signal. Substituting (1) in (7) gives

φzd = Mσ2
dhd,1hd. (8)

For further simplification of (6), the Woodbury identity is applied to
Φzz in (3):

Φ−1
zz =Φ−1

vv −Φ−1
vv hd

((
Mσ2

d

)−1
+ hd

†Φ−1
vv hd

)−1

hd
†Φ−1

vv

=

(
I−

((
Mσ2

d

)−1
+ α

)−1

Φ−1
vv hdhd

†
)
Φ−1

vv (9)

where

α = hd
†Φ−1

vv hd. (10)

Substituting (9) and (8) in (6) yields the expression

wMWF =
hd,1

(Mσ2
d)

−1 + α
Φ−1

vv hd. (11)

The corresponding MMSE is given by:

JMWF = E
[
|d(�)−wMWF

†z(�)|2
]
= σ2

d −wMWF
†ΦzzwMWF.

(12)

Substituting (11) in (12) gives

JMWF = σ2
d

(
Mσ2

d

)−1

(Mσ2
d)

−1 + α
. (13)

Denote the inner product of the desired and interfering ATFs by:

ρ = hd
†hi. (14)

Applying the Woodbury identity to Φvv in (4) and substituting the
result in (10) yields

α =
1

σ2
u

(
1− σ2

i

σ2
i + σ2

u/M
|ρ|2

)
. (15)

Finally, denoting the following spectra ratios

γd =
σ2
d

σ2
d + σ2

u/M
(16a)

γi =
σ2
i

σ2
i + σ2

u/M
(16b)

and substituting (15) in (13) gives

JMWF

(|ρ|2) =
σ2
u

M
γd

(
1− γdγi|ρ|2

)−1
. (17)

The last expression for the MMSE depends only on the sources spec-
tra, the number of microphones, and ρ. The residual error power,
JMWF, is a monotonically increasing function of |ρ|2. Considering
that 0 ≤ |ρ|2 ≤ 1 and the monotonic behavior of JMWF, the range of

JMWF is bounded by σ2
d

σ2
u/M

σ2
d
+σ2

u/M
≤ JMWF ≤ σ2

d
σ2
i +σ2

u/M

σ2
d
+σ2

i +σ2
u/M

. The

lower bound corresponds to the case where the sources’ ATFs are
orthogonal. Its corresponding MWF is the average of M identical
single channel Wiener filters calculated at the absence of the interfer-
ence. The upper bound corresponds to the case where the sources’
ATFs coincide. In this case the residual error power is maximized
since it is impossible to spatially separate the desired and interfering
sources. Its corresponding MWF is the average of M identical single
channel Wiener filters assuming that the interference is present.

In Sec. 4 the microphone locations are assumed random and the
statistics of ρ is analyzed. The statistics of ρ will then be used for
analyzing the statistics of JMWF based on (17) .
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4. THE STATISTICS OF ρ

A summary of the statistics of ρ which was derived by Lo in [3]
follows. ρ is a complex RV, ρ = ρr + iρi, with real and imaginary
components denoted by ρr and ρi. Using (14) and (2a,2b) it can be
verified that

ρr =
1

M

M∑
m=1

cos
(
ξi
xm

λ

)
(18a)

ρi =
1

M

M∑
m=1

sin
(
ξi
xm

λ

)
(18b)

where i =
√−1. Now since {xm}Mm=1 are independent identi-

cally distributed (i.i.d.) RVs, it can be shown that the first-order and
second-order moments of ρr and ρi are given by:

μρ,r = E [ρr] = φx(
ξi
λ
) (19a)

σ2
ρ,r = E

[
(ρr − μρ,r)

2] = 1

2M

(
1 + φx(2

ξi
λ
)

)
− φx

2(
ξi
λ
)

(19b)

μρ,i = E [ρi] = 0 (19c)

σ2
ρ,i = E

[
(ρi − μρ,i)

2] = 1

2M

(
1− φx(2

ξi
λ
)

)
− φx

2(
ξi
λ
)

(19d)

where φx (t) = sinc(tΔ) denotes the characteristic function of the
RV x, in the Uniform distribution case. The summands of the sum-
mation in ρr, ρi are i.i.d. RVs. Therefore, according to the central
limit theorem (CLT) they converge to a Gaussian RV for M � 1.
Assuming that

ξiΔ

λ
� 1, (20)

the following approximation holds:

ρr ∼N (0,
1

2M
) (21a)

ρi ∼N (0,
1

2M
). (21b)

Note that this approximation is not valid for θi → 0. Since ρr and
ρi are uncorrelated, i.e. E [ρrρi] = 0, 2M |ρ|2 = 2Mρr

2 + 2Mρi
2

is approximated by a χ2 RV with 2 degrees of freedom, which is an
Exponential RV with a parameter 1/2, i.e.

2M |ρ|2 ∼ exp(1/2). (22)

Note that when assumption (20) holds, ρ tends to its lower bound 0
as the number of microphones M increases, and according to (17)
the corresponding JMWF tends to its lower bound as well.

5. STATISTICS OF THE MSE

Using the Exponential distribution of |ρ|2, the expression for JMWF

in (17) and its monotonic behaviour, the cumulative distribution
function (CDF) of JMWF is given by:

Pr
(
JMWF(|ρ|2) ≤ J0

)
= Pr

(|ρ|2 ≤ JMWF
−1 (J0)

)
=

Pr

(
|ρ|2 ≤ γd

−1γi
−1

(
1− σ2

u/M

J0
γd

))
=

1− exp

(
−Mγd

−1γi
−1

(
1− σ2

u/M

J0
γd

))
. (23)

Equation (23) denotes a reliability measure of JMWF. It equals the
probability that the MMSE will not exceed a desired level, J0.

6. MODEL VERIFICATION

We turn now to the verification of the derived models. We verify
the Normal model of ρ in (21a,21b), and the Exponential models of
|ρ|2 and the reliability function in (22) and (23), respectively. For
each scenario a Monte-Carlo simulation consisting of 1000 arrays
of M = 21 microphones (unless stated otherwise) were randomized
with a Uniform distribution on a linear aperture of Δ = 10 length
units. A desired source and an interfering source arriving from the
far-field were simulated. The angle of arrival (AOA) of the desired
source was set to 0o, and the AOA of the interference was set to
θi = 5.5o (unless stated otherwise). A low level sensors noise was
added to the received signals. The signal to interference ratio (SIR)
was set to 0dB and the signal to noise ratio (SNR) was set to 30dB.
The results were obtained for wavelengths in the range of [0.1, 2]
length units, and are shown for a a specific wavelength of λ = 0.91
length units (unless stated otherwise).

6.1. The Normal model of the components of ρ and the Expo-
nential model of |ρ|2

The Normal probability plots of ρr and the Exponential probability
plots of 2M |ρ|2 were simulated for various combinations of λ and θi
and the results are shown in Fig. 1(a) and Fig. 1(b), respectively. The
blue color corresponds to θi = 1.5o, λ = 0.41 ⇒ ξi

Δ
λ

= 0.64, the

green color corresponds to θi = 9.5o, λ = 2 ⇒ ξi
Δ
λ

= 0.82, and

the red color corresponds to θi = 9.5o, λ = 0.41 ⇒ ξi
Δ
λ

= 4.02.
The various markers (cross, circle and plus) correspond to the mea-
surements data and the dashed lines correspond to the best distribu-
tion fit. Markers that coincide with the dashed lines correspond to a
good fit between the distribution model and the data.

Since assumption (20) holds only for the parameters of the red
curve, we expect it to coincide with the theoretical distribution mod-
els in (21a,21b) and (22). It is clear from Fig. 1(a) that a Normal
distribution model fits the blue, green and red curves. However,
only the red curve matches the zero mean model of ρ in (21a,21b).
From Fig. 1(b) it is obvious that only the red curve matches the Ex-
ponential distribution. The estimated mean and variance of ρr are
−3.1× 10−3 and 2.34× 10−2. These values match the theoretical
values of 0 and 2.38×10−2 = 1

2×21
in (21a,21b). The estimated pa-

rameter of the Exponential distribution of 2M |ρ|2 is 0.49. It matches
its theoretical value of 0.5 in (22). The blue and the green curves
are examples for cases where assumption (20) is invalid, rendering
the Exponential distribution inappropriate for representing the data
points.

6.2. The reliability of JMWF

In order to verify the reliability of JMWF the number of microphones
was set in the range M = 5, 6, . . . , 30. The analytical and empir-
ical reliability functions for M = 11 microphones are depicted in
Fig. 2(a). It is clear from this figure that the theoretical model in
(23) matches the empirical data. The MMSE normalized by the sig-
nal power in this case varies in the range of −41dB to −36dB.

The theoretical value of the CDF of the MMSE at point

Pr
(
10 log

(
JMWF

σ2
d

)
≤ −40

)
, as well as its empirical value are de-

picted in Fig. 2(b). It is clear from this figure that the theoretical
model matches the empirical results. It is evident that the CDF has an
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approximate step function characteristics. Below a certain threshold
(number of microphones) the CDF tends to 0 and above the threshold
it tends to 1 with an abrupt transition between the two values. The
threshold in Fig. 2(b) is approximately at M = 11 microphones.
Using more than 11 microphones, it is almost guaranteed that the
MWF error will be lower than −40dB.
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(a) Normal probability plots of ρr
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(b) Exponential probability plots of
2M |ρ|2

Fig. 1. Normal and Exponential probability plots of ρr and |ρ|2,
respectively, for various values of ξi

Δ
λ

(0.64 in blue, 0.82 in green
and 4.02 in red).

40 39 38 37 36
0

0.2

0.4

0.6

0.8

1

10log(J
0
/

d
2) [dB]

P
r(

J M
W

F
 J

0)

 

 

Theoretical CDF
Empirical CDF

(a) Theoretical (blue) and empirical
(green) CDF curves of JMWF with
an M = 11 microphones array
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Fig. 2. The CDF of JMWF as a function of J0 and M , the number of
microphones

Examples for a beampattern corresponding to an array realiza-
tion with M = 9 microphones (below the threshold), and for a
beampattern corresponding to an array realization with M = 15
microphones (above the threshold) are depicted in Fig. 3(a) and
Fig. 3(b), respectively. The beampattern in Fig. 3(a) has low side-
lobes while the beampattern in Fig. 3(b) seems to suffer from spatial
aliasing and as a results, exhibits high sidelobes.

7. CONCLUSIONS

In many applications, e.g. border security, exact design of the ar-
ray is impractical. The performance of these arrays, characterized
by a large number of microphones deployed in vast areas, cannot be
analyzed by traditional deterministic methods. In the current contri-
bution we have presented a statistical model for the performance of a
randomly located linear microphone array. Specifically, we analyzed
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(a) An example beampattern with
M = 15 microphones.
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(b) An example beampattern with
M = 9 microphones

Fig. 3. Examples for beampatterns for two array realizations. The
AOAs of the desired and interfering sources are depicted in green
and red, respectively.

the MMSE measure of the MWF, commonly used in speech appli-
cations. The case of one desired source and one interfering source
arriving from the far-field was treated. The theoretical models that
have been developed were verified by simulations. The proposed
model can be used for determining the number of microphones re-
quired for obtaining a predefined residual error level.

Special considerations need to be made when processing speech
signals. Throughout this work we assumed that the second-order
statistics of the various sources is available. This is hardly ever
the case in actual applications. A practical design of the MWF for
speech processing is given by Doclo and Moonen [2]. The deriva-
tion of the reliability measure assumes that the sources are station-
ary with known spectra. The reliability measure can be extended to
the case of speech signals in several ways. The stationary spectra
can be replaced by instantaneous spectra estimates, or time averaged
spectra. Alternatively, the required number of microphones can be
determined by worst-case considerations.
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