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ABSTRACT

Recently, we have presented a transient noise reduction algorithm for
speech signals that relies on non-local diffusion filtering. By exploit-
ing the repetitive nature of transient noises we proposed a simple
and efficient algorithm, which enabled suppression of various noise
types. In this paper, we incorporate a modified diffusion operator in
order to obtain a more robust algorithm and further enhancement of
the speech. We demonstrate the performance of the modified algo-
rithm and compare it with a competing solution. We show that the
proposed algorithm enables improved suppression of various tran-
sient interferences without any further computational burden.

Index Terms— Speech enhancement, speech processing, acous-
tic noise, impulse noise, transient noise

1. INTRODUCTION

Traditional speech enhancement approaches usually consist of two
components: noise power spectrum estimation and estimation of the
desired clean speech signal [1] [2]. These methods are based on two
fundamental assumptions. The first is that the noise spectrum re-
mains stationary during the observation interval, or slowly varying
compared to the spectrum of the speech signal. The second assump-
tion is that the speech signal is not continuously present during the
whole observation interval. Accordingly, a simple approach for esti-
mating the noise spectrum is to average the noisy measurement over
periods where the speech is absent. Then, by using the noise power
spectrum estimate, the speech signal can be retrieved based on a pre-
defined statistical model.

The assumption of pseudo-stationary noise signal poses a major
limitation on these traditional algorithms, making them inadequate
in many transient noise environments. Among them we mention
noise originating from engines, keyboard typing, construction oper-
ations, bells, knocking, rings, hammering, etc. In [3] we presented a
novel approach for transient noise reduction that relies on non-local
(NL) filtering [4]. The proposed algorithm handles speech signals
contaminated with repeating transient noise events, utilizing the fact
that a distinct pattern appears multiple times. Specifically, the loca-
tions of the repeating pattern are identified, and the transient noise
is extracted by averaging over all of these instances. The algorithm
consists of three stages. In the first stage, the transient noise is en-
hanced relying on the strong correlation in time of the speech signal
and the discontinuity of the transient noise. In the second stage, a
NL filter is employed to extract the transient noise signal. In the third
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stage, the optimally modified log spectral amplitude (OM-LSA) es-
timator [2], equipped with a modified noise power spectral density
(PSD) estimator, is utilized for the enhancement of the speech. The
noise power spectrum estimate is based on the extracted transient
signal from the second stage.

In this paper we incorporate a modified NL filter with superior
characteristics. In particular, the modified filter is associated with
both backward and forward diffusion, which enables simultaneous
denoising and sharpening of the desired signal. In addition, it en-
ables to employ a larger number of denoising steps, yielding a more
robust algorithm and a more accurate extraction of the transient sig-
nal. We demonstrate the improved robustness attained by the modi-
fied algorithm on various transient noise types, and show that better
results are obtained compared to both the OM-LSA, and the algo-
rithm presented in [3]. This paper is organized as follows. In Section
2, we formulate the problem. In Section 3, the transient noise reduc-
tion algorithm is presented. In Section 4, we elaborate on the pro-
posed modification and discuss its characteristics. Finally, in Section
5, we show experimental results that demonstrate the advantages of
the proposed method.

2. PROBLEM FORMULATION

Let y(n) be a measured speech signal contaminated with additive
noise

y(n) = s(n) +d(n) M

where s(n) is a speech signal and d(n) is a transient noise signal. It
is worthwhile noting that the presence of additional stationary noise
would not change significantly the derivation of the algorithm, how-
ever we omit it for simplicity.

The observation interval is divided into M short-time frames of
length N. We assume that the speech signal is modeled as an auto
regressive (AR) process in short-time frames. Accordingly, in each

time frame p = 1, ..., M, the source signal is an AR process, given
by
L
s(n) = Z aips(n — 1) +w(n) ?2)
1=1

where w(n) is a white noise excitation signal with zero mean and
variance o2, and {a;,, }i~; are the AR coefficients of frame p.

The transient noise consists of short duration pulses with random
amplitudes. It may be written as the output of a filter, excited by an
amplitude-modulated random binary sequence [5]:

d(n) = hy * (b(n)v(n)) ©)
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where b(n) is a binary valued random sequence of time occurrences
of the transient noise, e.g. a Poisson process, v(n) is a continuous
valued Gaussian process of transient amplitude, and h,, is an impulse
response of a filter that determines the duration and shape of each
transient event. We assume that in a single time frame no more than
one transient event exists.

3. PROPOSED ALGORITHM

3.1. Transient Noise Enhancement

We utilize the differences between the transient noise and the AR
source signal. The transient noise, modeled as a short duration pulse,
introduces discontinuity in the signal. Thus, decorrelating the noisy
measurement y(n) in each time frame using the AR parameters of
the source signal has the following effect. First, the scale of the
source signal amplitude is reduced to almost that of the original
excitation signal, whereas the scale of the transient noise remains
unchanged or increased. Second, the source signal is decorrelated,
whereas the transient noise is smeared. Let §,(n) be the decorrelated
measurement in time frame p

Gp(n) = w(n) + dy(n) )

written as the sum of the source excitation signal w(n), and a
smeared version of the transient noise d(n), given by

dp(n) = d(n) = > aipd(n—1). 5)

=1

We apply the short-time Fourier transform (STFT) in order to
further enhance the difference between the transient noise and the
source. From (4) and (5), we have that the STFT of the decorrelated
signal in time frame p and frequency bin k is

U,k = Wy, + (1 — A(p, k) dp,x (6)

where wy, 1, is the STFT of the excitation signal, A(p, k) is the trans-
fer function of the source AR filter (under the multiplicative transfer
function (MTF) approximation), and d,, j is the STFT of the tran-
sient noise. Let Hy denote the set of time frames free of transient
noise occurrence and let A7 denote the set of time frames that con-
tain a transient occurrence. Then, from (3) we obtain that d, ; can
be written as

pEH1

pe H )

dp,k =

{ (I;I(k)vp,k

where H (k) is the MTF approximation of the transient noise system
I, Up i 1 the transform of (b(n)v(n)), and b(n) in frame p € H,
is an impulse.

3.2. Transient Noise Extraction using Nonlocal Filter

Equations (6) and (7) imply that all time frames contain the AR
source excitation signal, whereas only time frames that contain tran-
sient occurrences have distinct shape, which may vary according to
the specific noise type. We note that silent segments are disregarded
in our analysis. The divergence between time frame shapes is ex-
ploited in order to extract the transient noise from the decorrelated
measurement. Let y be an M x N matrix, defined as

V=01, 92, - Gum]" (8)
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where g, is a vector of the STFT samples from all frequency bins of
the pth time-frame of the decorrelated signal (6), given by

Jp = [Gp0s - - Gpn—1]" - ©9)

Let £ : CY x €Y — R be a kernel representing a notion of
similarity between two vectors ¢, (time frames). Based on the rela-
tion defined by the kernel, we form a weighted graph or a Euclidean
manifold, where the time frame vectors are the vertices and the ker-
nel sets the weights of the edges connecting the vectors. Generally,
the choice of the specific kernel function is application-oriented to
yield meaningful connections that convey the local geometry of the
data. Then, a Markov random walk on the manifold is defined by [6]

(i, 1) = 7%5) (10)

where d(gp) = Zl]‘il k(Up, 1) Consequently, p(gp, §;) represents
the probability of transition in a single step from node ¢, to node ;.
Let K denote the matrix corresponding the kernel function £, and
let P = D~ 'K be the matrix corresponding to the transition proba-
bility function p, both defined on the vectors ¢,, where D is a diag-
onal matrix with Dy, = d(@p). Thus, advancing the random walk
forward by a single step can be written simply as matrix multipli-
cation Py. Consequently, running the random walk ¢ steps forward
is equivalent to P'y. Advancing the Markovian process a single
step forward is equivalent to averaging over similar time frames (in
the kernel sense), and hence constitutes a “denoising” iteration [4],
which can be written as'

dp = [PF]} = p(ip, 1) (11)
l

where a?p is the estimation of the smeared transient noise signal in
the STFT domain after a single iteration. It is worthwhile noting
that performing consecutive iterations may enhance the signal fur-

ther. Let J;, = [Ptj'l]j denote the extracted smeared transient noise
signal after performing ¢ denoising iterations.

The choice of the kernel is of key importance in this method. We
use the following Gaussian kernel, as defined in [3]

_M} (12)

k(G 1) = exp{ 557

where ¢g(p) is the short-time PSD of the pth frame of the decorre-
lated measurement (4). This specific choice of the kernel is moti-
vated by the desire to exploit the reoccurring distinct shape of time
frames containing a transient event, which may be conveyed by the
frame PSD ¢3(p). This particular kernel leads to the following re-
sult. Time frames that contain transient noise occurrences are simi-
lar (in the kernel sense) to other frames that contain transient noise
of the same shape. On the other hand, time frames free of tran-
sient noise are similar to other frames free of transient noise. In
either case, when applying (11), the speech excitation signal wy, k.,
which has random characteristics, is summed destructively, and the
resulting frame is “denoised” from the excitation signal. As a con-
sequence, the transient noise signal is extracted.

By applying inverse filtering to (5) with the spectral envelope
of the AR source 1/(1 — A(p, k)) on the extracted transient noise,
we obtain an estimate of the transient signal in the STFT domain
cfp,k. Since the kernel is based only on the spectral shape, it pro-
vides an estimate of the transient signal short-time PSD rather than

![X]; extracts the ith row of the matrix X.



an estimate of the signal itself. Accordingly, (;Aﬁd(p, k) denotes the
short-time PSD estimate of the transient noise, calculated based on
the extracted transient noise signal from the output of the diffusion
filter.

3.3. OM-LSA with a Modified Noise Spectrum Estimator

For enhancing the speech, we use an OM-LSA version equipped
with a modified noise power spectrum estimate. From the output
of the diffusion filter we obtain an estimate of the PSD of the tran-
sient noise signal ¢q(p, k). Thus, we adjust the calculation of the
optimal spectral gain function to rely on a sum of the transient noise
PSD estimate gz@d(p, k) and the stationary noise PSD estimate, ob-
tained using the MCRA approach [7]. The calculation of the opti-
mal spectral gain function is controlled by both the stationary and
transient noise parts, and thus, attenuation of transient occurrences
is attainable. For more details regarding the optimal gain function
derivation and estimation of the speech presence probability and the
noise spectrum, we refer the readers to [2] and the references therein.

4. A MODIFIED DIFFUSION FILTERING

By using spectral decomposition of P, ¢ consecutive denoising iter-
ations can be presented as

M—1

[P'y],, = > Ajbs ki (p) (13)
=0

where {)\;, 1;} are the eigenvalues and right eigenvectors of P, and
b;, i are the inner products between the left eigenvectors ¢; and the
decorrelated signal at frequency bin k. From (13), we observe that
the decay rate of the eigenvalues has an impact on both the number
of significant components and on the number of denoising iterations.

Now, consider the operator PV = 2P — P? proposed in [4],
which has the same eigenvectors as P, but its eigenvalues satisfy
2\; — A7 = 1 — (1 — X;)*. Therefore the new operator has a
much smaller suppression of the large eigenvalues®. Naturally, this
modification can be performed recursively, yielding the following
family of operators

PUth = gp® _ p(®)? (14)

where the suppression of the large eigenvalues decreases with each
iteration ¢. Thus, replacing P with P 2 in (13) yields a larger num-
ber of significant components and enables to apply more denoising
iterations.

Another characteristic of these modified operators emerges from
[8], where it was shown that P converges to [ + £, where L is the
backward Fokker-Planck diffusion operator. Therefore the modified
operator converges to

PY —op_pP?=T_(I-PP?~I-L)I+L). (5

Accordingly, by using P® | each denoising iteration implies run-
ning the diffusion forward (destructive summation of the excitation
signal), followed by running the diffusion backward (sharpening the
transient signal).

2It can be shown that the eigenvalues satisfy 1 = Ao > A1 > ... > 0.

eigenvalue
TSR improvement

eigenvalue number diffusion steps

Fig. 1. Left: eigenvalues of the diffusion operators. Right: the TSR

improvement (in dB) obtained as a function of the number of denois-
ing steps.

Table 1. Evaluation of the Transient Signal Estimation (in dB).

Noise Type ‘ Input TSR | Output TSR
p | PM
Metronome -8.7 5.5 7.4
Door Knocks -6.7 4.0 4.7
Kitchen Pocks -0.3 6.0 8.2
Household Clicks -7.5 6.6 8.9

5. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed method
with the modified operators and compare the results with the results
of the OM-LSA estimator.

In the first experiment we generate signals according to the time
domain model. The source signal is simulated as a stationary AR
source (2), and the transient occurrences are determined according
to the Gaussian-Poisson distributions (3).

For measuring the performance of the transient signal extraction
we use the transient to signal ratio (TSR) defined as

E{d*(n)} _
E{ (d(n) - d(n))2}

Figure 1 presents the results of the first experiment obtained by
using P, P ) and PP as diffusion operators. We present the eigen-
values of the modified operators. According to the analysis in Sec-
tion 4, slower decay of eigenvalues in an inverted parabolic shape is
observed when applying the modified operators. In Fig. 1 we also
present the TSR improvement as a function of diffusion steps. First,
we observe that all operators enable approximately the same maxi-
mum performance. Second, the modified operators enable broader
range of diffusion steps, making the algorithm more robust to fur-
ther denoising and to an arbitrary choice of the number of steps. It
is worthwhile noting that it does not imply an additional computa-
tion burden since the diffusion process may be implemented via the
spectral decomposition (13).

In the second experiment we use recorded speech signals and
transient noises, sampled at 16 KHz. The various recorded tran-
sient noises are taken from [9]. The measurements are constructed
according to (1), with additional low variance computer generated
Gaussian white noise. We use short-time frames of length 256 both
for the LPC estimation and for the STFT. In each time frame, we es-
timate an AR envelope consisting of L = 20 coefficients. In order to
compare different noise signals of various durations and shapes, we
maintain a constant value of the noise maximum amplitude, which
equals to the maximum amplitude of the speech.

TSR = 10log;, (16)
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Fig. 2. Signal spectrograms. Top: the noisy measurement. Middle:
the enhanced speech obtain by the OM-LSA. Bottom: the enhanced
speech obtain by the proposed algorithm.
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Fig. 3. Signal spectrograms and waveforms near the transient com-
ponent at 2.5s. Left: the noisy measurement. Right: the enhanced

speech obtain by the proposed algorithm.

Table 1 compares the TSR obtained by the proposed method us-
ing P and P® as diffusion operators, at the input and output of
the algorithm second stage. As shown, usage of the modified op-
erator enables improved TSR. These improved results were enabled
by the characteristics of the modified operator. When using P!,
optimal results were obtained by employing a larger number of dif-
fusion steps (131, 072 compared to 128). Figure 2 shows spectro-
grams of the noisy measurement of a speech signal contaminated
by metronome interference, and the enhanced speech obtained by
the OM-LSA and the proposed algorithm (using P! as the diffu-
sion operator). It is worthwhile noting that we randomly change the
gaps between the metronome transient occurrences in order to fully
demonstrate the proposed algorithm robustness. We notice that in
the OM-LSA output the metronome signal is not suppressed, and
the noisy measurement remains unchanged. However, we observe
at the output of the proposed algorithm, that the metronome percus-
sive events were completely removed, while maintaining the speech
components undistorted. Figure 3 zooms in to the area near the tran-
sient event at 2.5s, and further illustrates the removal of the transient
component and the preservation of the speech, obtained by the pro-
posed method.
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Table 2. Enhancement Evaluation in Transient Occurrence Periods

(in dB).
Noisy Type Input SNR Output SNR
‘ OM-LsA | P | PW
Metronome -9.50 -9.47 0.08 1.46
Door Knocks -7.66 -7.43 -0.81 | 2.05
Kitchen Pocks -13.88 -13.49 -6.97 | -4.09
Household Clicks -13.13 -12.96 -4.18 | -1.55

In order to evaluate the enhancement of the speech we measure
the commonly used signal to noise ratio (SNR). Table 2 summarizes
the SNR, calculated only in transient occurrence time frames. We
observe that the proposed algorithm obtains superior SNR compared
to the OM-LSA. In addition, the use of P! increases the speech
enhancement. As described before, the improved performance is
obtained by employing more iterations, which is enabled by P
characteristics.

6. CONCLUSIONS

We have presented a non-local diffusion filter for handling speech
corrupted with transient interferences. The proposed approach ex-
ploits the intrinsic geometric structure of the measurements. In par-
ticular, it relies on the divergence between speech components and
sharp impulses of repeating transient noise occurrences. By relying
on the diffusion interpretation of the non-local filters, we utilize a
modified diffusion operator with more attractive characteristics. Ex-
perimental results show that for repetitive and short transient occur-
rences, the proposed algorithm achieves superior performance, ob-
taining better transient noise extraction and further enhanced speech
signal. In addition, we demonstrate the robustness of the proposed
method using various types of transient interferences.
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