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ABSTRACT

In speech enhancement applications microphone array postfilte-
ing allows additional reduction of noise components at a beam-
former output. Among microphone array structures the recently
proposedGeneral Transfer function Generalized Sidelobe Can-
celler (TF–GSC) has shown impressive noise reduction abilities
in a directional noise field, while still maintaining low speech dis-
tortion. However, in a diffused noise field less significant noise
reduction is obtainable. The performance is even further de-
graded when the noise is nonstationary . In this contribution we
present three postfiltering methods for improving the performance
of microphone arrays. Two of which are based on single–channel
speech enhancers and making use of recently proposed algorithms
concatenated to the beamformer output. The third is a multi–
channel speech enhancer which exploits noise–only components
constructed within the TF–GSC structure. An experimental study,
which consists of both objective and subjective evaluation in vari-
ous noise fields, demonstrates the advantage of the multi–channel
postfiltering compared to the single–channel techniques.

1. INTRODUCTION

Recently, an extension to the classical Griffiths & JimGeneral-
ized Sidelobe Canceller(GSC), which deals with arbitrary transfer
functions (TFs), was suggested by Gannot et al. [1]. Although
providing good results in the directional noise case, there is a sig-
nificant degradation in the performance of the array, in nondirec-
tional noise environments such as thediffused noisecase. Further-
more, as noise statistics might change over time (nonstationary
noise framework), the expected performance is even lower. The
use of postfiltering is therefore called upon to improve the beam-
forming performance in nondirectional and nonstationary noise
environments. Postfiltering for the simpleDelay and Sumbeam-
former based on the Wiener filter was suggested by Zelinski [2].
Later, postfiltering was incorporated into the Griffiths & Jim GSC
beamformer [3].

A method dealing with nonstationary noise sources was first
suggested by Cohen and Berdugo [4]. This postfiltering method is
working in conjunction with the classical Griffiths and Jim GSC
beamformer and making use of both the beamformer output and
noise reference signals resulting from the blocking branch, thus
constituting multi-microphone postfiltering.

In this paper we extend this method and incorporate it into the
TF–GSC beamformer suggested by Gannot et al. [1]. This method
is assessed in various noise fields and compared with the single
microphone postfilters. Furthermore, the use of two modern algo-

rithms is proposed and assessed. The first is theMixture-Maximum
(MIXMAX) algorithm [5]. The second is theoptimally modified
log spectral amplitudeestimator (OM–LSA) [6].

The scenario of the problem is presented in Section 2. The
TF–GSC is briefly reviewed in Section 3. The proposed multi-
microphone postfilter is presented in Section 4. Section 5 is de-
voted to the assessment of the proposed method and to a compari-
son with the single microphone postfilters.

2. PROBLEM FORMULATION

Consider an array of sensors in a noisy and reverberant environ-
ment. The received signal is comprised of three components. The
first is a speech signal, the second is some stationary interference
signal and the third is some nonstationary (transient) noise com-
ponent. Our goal is to reconstruct the speech component from the
received signals. Let,zm(t) be them-th sensor signal,s(t) be
the desired speech source,ns

m(t) andnt
m(t) be the stationary and

transient noise components, respectively. Note, that both noise
components might be comprised of coherent (directional) noise
component and diffused noise component.Zm(t, ejω), S(t, ejω),
Ns

m(t, ejω) andN t
m(t, ejω) are the short time Fourier transforms

(STFT) of the respective signals.Am(ejω) is the frequency re-
sponse of them-th acoustical transfer function(ATF) from the
speech source to them-th sensor, assumed to be time invariant
during the analysis period. We have in the time–frequency domain
in a vector form,

Z(t, ejω) = A(ejω)S(t, ejω) +Ns(t, e
jω) +N t(t, e

jω) (1)
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3. SUMMARY OF THE TF–GSC ALGORITHM

An approach for signal enhancement based on the desired signal
nonstationarity was suggested by Gannot et al. [1]. TheM mi-
crophone signals are filtered by a corresponding set ofM filters,
W ∗

m(t, ejω) ; m = 1, . . . , M , and their outputs are summed to
form the beamformer output,Y (t, ejω) = W †(t, ejω)Z(t, ejω).
W †(t, ejω) =

�
W ∗

1 (t, ejω) W ∗
2 (t, ejω) · · · W ∗

M (t, ejω)
�
,



∗ denotes conjugation and† denotes conjugation transpose.
W (t, ejω) is determined by minimizing the output power subject
to the constraint that the signal portion of the output is the de-
sired signal,S(t, ejω), up to some pre-specified filterF∗(t, ejω)
(usually a simple delay). This minimization can be efficiently im-
plemented by constructing a GSC structure as depicted in Fig-
ure 1. The GSC solution is comprised of three components: A
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Fig. 1. GSC solution for the general TFs case (TF–GSC).

fixed beamformer (FBF) implemented byW †
0(t, e

jω), a blocking
matrix (BM) implemented byH†(ejω) that constructs the noise
reference signals (both stationary and transient components) and
a multi-channel noise canceller (NC) implemented by the filters
G(t, ejω). The filtersG(t, ejω) are adjusted to minimize the
power at the output,Y (t, ejω), exactly as in the classical Widrow
problem. The filters are usually constrained to an FIR structure
for stabilizing the update algorithm. Note that, the role of mini-
mization [by adjustingG(t, ejω)] and constraining [by applying
W 0(t, e

jω)] operations are decoupled by this structure.

Although an exact knowledge of the ATFsA(ejω) would
yield distortionless reconstruction of the desired speech signal, it
has been shown that the ATFs ratio alone,H(ejω) may be suf-
ficient in practice. A sub-optimal FBF block, which aligns the
desired signal components but does not eliminate the reverbera-
tion termA1(e

jω) was used. The followingM × (M − 1) matrix
H(ejω) can serve as a blocking matrix,

H(ejω) =

26666664
−A∗2(ejω)

A∗1(ejω)
−A∗3(ejω)

A∗1(ejω)
. . . −A∗M (ejω)

A∗1(ejω)

1 0 . . . 0
0 1 . . . 0

. . .
. . .

0 0 . . . 1

37777775 . (2)

where, the ATFs ratio vector,H(ejω), is assumed to be known.
However, in practiceH(ejω) is not known and should be esti-
mated. An estimation method based on the desired signal nonsta-
tionarity was suggested in [1]. This estimation method is based
on two assumptions. First, it is assumed that the ATFs ratios are
slowly changing in time compared to the time variations of the de-
sired speech signal. Second, it is assumed that no transient noise
component is active during the analysis interval, i.e. the noise
statistics is assumed to be fixed. These assumptions are exploited
for deriving a set of equations for the same unknown ATFs ratio.

4. MULTI-MICROPHONE POSTFILTER

In this section, we address the problem of estimating the noise
PSD at the beamformer output, and present the multi-microphone
postfiltering technique. Desired speech components are detected
at the beamformer output, and an estimateq̂(t, ejω) for thea pri-
ori speech absence probability is produced. Based on a Gaussian
statistical model [7], and a decision-directed estimator for thea
priori SNR under signal presence uncertainty [6], we derive an
estimatorp(t, ejω) for the speech presence probability. This esti-
mator controls the components that are introduced as noise into the
PSD estimator. Finally, spectral enhancement of the beamformer
output is achieved by applying an OM-LSA gain function, which
minimizes the mean-square error of the log-spectra [6].

Let S be a smoothing operator in the power spectral domain,
defined by

SY (t, ejω) = αs · SY (t− 1, ejω)+ (3)

(1− αs)

ΩX
ω′=−Ω

b(ejω′)|Y (t, ej(ω−ω′))|2

whereαs (0 ≤ αs ≤ 1) is a forgetting factor for the smoothing in
time, andb is a normalized window function (

PΩ
ω′=−Ω b(ejω′) =

1) that determines the order of smoothing in frequency (2Ω is the
frequency bandwidth). LetM denote aMinima Controlled Recur-
sive Averaging(MCRA) estimator for the PSD of the background
pseudo-stationary noise [8]. Then, we define atransient beam-to-
reference ratio(TBRR) [4] by

ψ(t, ejω) = (4)

max
�SY (t, ejω)−MY (t, ejω), 0

	
max {{SUm(t, ejω)−MUm(t, ejω)}M

m=2 , εMY (t, ejω)}

whereε is a constant (typicallyε = 0.01), preventing the de-
nominator from decreasing to zero in the absence of a transient
power at the reference signals. This gives a ratio between the tran-
sient power at the beamformer output and the transient power at
the reference signals, which indicates whether a transient compo-
nent is more likely derived from speech or from environmental
noise. Assuming that the steering error of the beamformer is rel-
atively low, and that the interfering noise is uncorrelated with the
desired speech, the TBRR is generally higher if transients are re-
lated to desired sources. For desired source components, the tran-
sient power of the beamformer output is significantly larger than
that of the reference signals. Hence, the nominator in (4) is much
larger than the denominator. On the other hand, for interfering
transients, the TBRR is smaller than1, since the transient power
of at least one of the reference signals is larger than that of the
beamformer output. By modifying the speech presence probabil-
ity based on the TBRR, we can generate a double mechanism for
nonstationary noise reduction: First, through a fast update of the
noise estimate (an increase in the noise estimate essentially results
in lower spectral gain). Second, through the spectral gain compu-
tation (the spectral gain is exponentially modified by the speech
presence probability [6]).

Let γs(t, e
jω) , |Y (t, ejω)|2/MY (t, ejω) denotea poste-

riori SNR at the beamformer output with respect to the pseudo-
stationary noise. Then, the likelihood of speech presence is high
only if both γs(t, e

jω) andψ(t, ejω) are large. A large value of
γs(t, e

jω) implies that the beamformer output contains a transient,



while the TBRR indicates whether such a transient is desired or in-
terfering. Therefore,

q̂(t, ejω) =

8>><>>:
1, if γs(t, e

jω) ≤ γlow or ψ(t, ejω) ≤ ψlow

max
n

γhigh−γs(t,ejω)

γhigh−γlow
,

ψhigh−ψ(t,ejω)

ψhigh−ψlow
, 0
o

,

otherwise,
(5)

can be used as a heuristic expression for estimating thea priori
speech absence probability. It assumes that speech is surely absent
if eitherγs(t, e

jω) ≤ γlow or ψ(t, ejω) ≤ ψlow. Speech presence
is assumed ifγs(t, e

jω) ≥ γhigh andψ(t, ejω) ≥ ψhigh. The
constantsψlow andψhigh represent the uncertainty inψ(t, ejω)
during speech activity, andγlow and γhigh represent the uncer-
tainty associated withγs(t, e

jω). In the regionsγs ∈ [γlow, γhigh]
andψ ∈ [ψlow, ψhigh] we assume that̂q(t, ejω) is a smooth bilin-
ear function ofγs(t, e

jω) andψ(t, ejω).
Based on a Gaussian statistical model [7], the speech presence

probability is given by

p(t, ejω) = (6)�
1 +

q(t, ejω)

1− q(t, ejω)
(1 + ξ(t, ejω)) exp(−υ(t, ejω))

�−1

where ξ(t, ejω) , E
�|S(t, ejω)|2	 /λ(t, ejω) is the a priori

SNR,λ(t, ejω) is the noise PSD at the beamformer output (includ-
ing the stationary as well as the nonstationary noise components),
υ(t, ejω) , γ(t, ejω) ξ(t, ejω)/(1 + ξ(t, ejω)), andγ(t, ejω) ,��Y (t, ejω)

��2 /λ(t, ejω) is thea posterioritotal SNR. Thea priori
SNR is estimated using a “decision-directed” method [6] :

ξ̂(t, ejω) = α G2
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(1− α)max
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o

whereα is a weighting factor that controls the trade-off between
noise reduction and signal distortion, and
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is the spectral gain function of theLog-Spectral Amplitude(LSA)
estimator when speech is surely present [9].

The noise estimate at the beamformer output is obtained by
recursively averaging past spectral power values of the noisy mea-
surement. The speech presence probability controls the rate of the
recursive averaging. Specifically, the noise PSD estimate is given
by

λ̂(t + 1, ejω) = (9)

α̃λ(t, ejω)λ̂(t, ejω) + β · [1− α̃λ(t, ejω)]|Y (t, ejω)|2

whereα̃λ(t, ejω) is a time-varying frequency-dependent smooth-
ing parameter, andβ is a factor that compensates the bias when
speech is absent [10]. The smoothing parameter is determined
by the speech presence probabilityp(t, ejω), and a constantαλ

(0 < αλ < 1) that represents its minimal value:

α̃λ(t, ejω) , αλ + (1− αλ) p(t, ejω) . (10)

When speech is present,α̃λ(t, ejω) is close to1, thus preventing
the noise estimate from increasing as a result of speech compo-
nents. In case of speech absence and stationary background noise

or interfering transients, the TBRR as defined in (4) is relatively
small (compared toψlow). Accordingly, thea priori speech ab-
sence probability (5) increases to1, and the speech presence prob-
ability (7) decreases to0. As the probability of speech presence de-
creases, the smoothing parameter gets smaller, facilitating a faster
update of the noise estimate. In particular, the noise estimate in
Eq. (10) is able to manage transient as well as stationary noise
components. It differentiates between transient interferences and
desired speech components by using the power ratio between the
beamformer output and the reference signals.

An estimate for the clean signal STFT is finally given by

Ŝ(t, ejω) = G(t, ejω)Y (t, ejω) , (11)

where

G(t, ejω) =
n

GH1(t, e
jω)
op(t,ejω)

·G1−p(t,ejω)
min (12)

is the OM-LSA gain function andGmin denotes a lower bound
constraint for the gain when speech is absent.

5. EXPERIMENTAL STUDY

In this section we apply the proposed postfiltering algorithms to
the speech enhancement problem and evaluate their performance.
We assess the algorithms’ performance both in a conference room
scenario and in a car environment and compare the single mi-
crophone postfilters (MIXMAX and OM–LSA) with the Multi-
Microphone algorithm.

The enclosure is a conference room with dimensions5m ×
4m× 2.8m. A linear array comprised of four microphones27cm
long was placed on a table at the center of the room. Two loud-
speakers were used. One, at the left of the array (0.6m from its
center), for the speech source and the other, at the right of the ar-
ray (1.2m from its center), for the noise source. The speech source
was comprised of four TIMIT sentences with various levels. The
microphone inputs were generated by mixing speech and noise
components, that were created separately at various SNR levels.
We considered three noise sources: a point source, a diffused
source, and a nonstationary diffused source. In order to generate
the point noise source, we transmitted an actual recording of fan
noise (low–pass PSD) through a loudspeaker. The diffused noise
source was generated by simulating an omni–directional emittance
of a flat PSD bandpass filtered noise signal. The third was the same
diffused noise source but with alternating amplitude to demon-
strate the ability of the algorithm to cope with transients in the
noise signals.

The car scenario was tested by actual (separate) recordings of
a speech signal comprised of the ten English digits and the car
noise signal. The windows of the car were slightly open. Tran-
sient noise is received as a result of passing cars and wind blows.
The stationary component of the noise results from the constant
hum of the road. Four microphones were mounted onto the visor.
The microphone signals were generated by mixing the speech and
noise signals with various SNR levels.

Three objective quality measures were used to asses the al-
gorithms’ performance. The first objective quality measure is the
noise level(NL) during nonactive speech periods, defined as,

NL = Meant∈speech nonactive{10 log10(E(t))}
whereE(t) =

P
τ∈Tt

y2(τ), y(t) is the signal to be assessed
(noisy signal or algorithm’s output) andTt are the time instances



corresponding to segment numbert. Note, that the lower the NL
figures are the better the result obtained by the respective algo-
rithm is. The second objective speech quality measure which is
with better correlation withmean opinion score(MOS) is thelog
spectral distance(LSD) defined by,

LSD = Meant∈speech activenp
Meanω {[20 log10 |S(t, ejω)| − 20 log10 |Y (t, ejω)|]2}

o
.

Recall thatS(t, ejω) andY (t, ejω) are the STFT of the input and
assessed signals, respectively. Note, that a lower LSD level corre-
sponds to better performance. The third figure of merit is the well–
known weighted segmental SNR(W-SNR). This measure applies
weights to the segmental SNR within frequency bands. The fre-
quency bands are spaced proportionally to the ear’s critical bands,
and the weights are constructed according to the perceptual quality
of speech.

The NL figure of merit is shown in Figure 2 for the four noise
conditions. It is evident from Figure 2 that the residual noise level
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Fig. 2. Mean Noise Level (NL) during nonactive speech periods.

obtains its lowest level by using the multi-microphone postfilter
for each of the noise sources. In the stationary noise cases the
performance of the two single–channel postfilters (MIXMAX and
OM-LSA) is comparable although somewhat degraded related to
the multi-microphone postfilter. Thus, the advantage of using the
multi-microphone postfilter instead of the single-microphone post-
filters is less significant. The TF–GSC beamformer obtains better
results in the directional noise source, and accordingly, the role of
all postfilters is not as crucial as in the diffused noise field case.

The LSD results are depicted in Figure 3. Generally speak-
ing, the best performance (lowest LSD) is obtained with the Multi-
Microphone postfilter. Its importance is more evident in the non-
stationary noise cases (nonstationary diffused and car noise). In
the directional (and stationary) noise field the performance of the
MIXMAX postfilter and the multi-microphone postfilter is almost
identical. However, the TF–GSC obtains quite good results with-
out any postfilter. The results manifested by the W-SNR quality
measure are in accordance with the previous discussion. Subjec-
tive evaluation of sonograms and non–formal listening tests vali-
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Fig. 3. Mean LSD during active speech periods.

dates these conclusions. Examples of the processed speech signals
can be found at [11].
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