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ABSTRACT

Microphone array post-filtering allows additional reduction
of noise components at a beamformer output. Existing
techniques are either restricted to classical delay-and-sum
beamformers, or are based on single-channel speech en-
hancement algorithms that are inefficient at attenuating
highly non-stationary noise components. In this paper, we
introduce a microphone array post-filtering approach, ap-
plicable to adaptive beamformer, that differentiates non-
stationary noise components from speech components. The
ratio between the transient power at the beamformer pri-
mary output and the transient power at the reference noise
signals is used for indicating whether such a transient is de-
sired or interfering. Based on a Gaussian statistical model
and combined with an appropriate spectral enhancement
technique, a significantly reduced level of non-stationary
noise is achieved without further distorting speech compo-
nents. Experimental results demonstrate the effectiveness
of the proposed method.

1. INTRODUCTION

Microphone array systems are often used for high quality
hands-free communication in reverberant and noisy envi-
ronments [1]. Compared to single microphone systems, a
substantial gain in performance is obtainable due to the
spatial filtering capability to suppress interfering signals
coming from undesired directions. Post-filtering at a beam-
former output, based on the Wiener approach, allows fur-
ther reduction of incoherent noise components [2]-[6]. How-
ever, existing post-filtering techniques are either restricted
to classical delay-and-sum beamformers, or are based on
single-channel speech enhancement algorithms [7]. A single-
channel post-filtering approach lacks the ability to atten-
uate highly non-stationary noise components, since such
components are indistinguishable from the speech compo-
nents.

Recently, we introduced a noise estimation approach,
namely Minima Controlled Recursive Averaging (MCRA)
[8, 9], that is particularly advantageous under low input
signal-to-noise ratio (SNR) and non-stationary noise con-
ditions. The noise estimate is obtained by averaging past
spectral power values, using a smoothing parameter that is
adjusted by the speech presence probability in subbands.
The speech presence probability is based on a Gaussian
statistical model and controlled by the minima values of a
smoothed periodogram of the noisy speech. We have shown

that compared to competitive methods, the MCRA noise
estimate responses more quickly to noise variations and ob-
tains significantly lower estimation error. When integrated
into a speech enhancement system, it yields higher speech
quality and a lower level of musical residual noise.

In this paper, we extend the MCRA approach to mi-
crophone array post-filtering. By exploiting the relation
between the beamformer primary output and the reference
noise signals, we make a distinction between non-stationary
noise components and speech components. The speech is as-
sumed to be strongest at the primary output, while a noise
component is presumably strongest at one of the reference
signals. Hence, the ratio between the transient power at the
primary output and the transient power at the reference sig-
nals 1s used for indicating whether such a transient is desired
or interfering. The speech presence probability determines
the rate of recursive averaging for obtaining a noise esti-
mate. When speech is present, the recursive averaging is
slow, thus preventing the noise estimate from increasing as
a result of speech activity. As the probability of speech
presence decreases, the recursive averaging rate increases,
facilitating a faster update of the noise estimate. Com-
bined with an appropriate spectral enhancement technique,
we achieve a significantly reduced level of non-stationary
noise without further distorting speech components.

The paper is organized as follows. In Section 2, we
review the MCRA noise estimation approach. The micro-
phone array post-filtering is introduced in Section 3. Ex-
perimental results, which validate the effectiveness of the
proposed method, are presented in Section 4.

2. SINGLE MICROPHONE NOISE SPECTRUM
ESTIMATION

Let z(n) and d(n) denote speech and uncorrelated addi-
tive noise signals, and let y(n) represent the noisy ob-
served signal. In the short-term Fourier domain we have
Y(k,f) = X(k,{) + D(k,£), where k designates the fre-
quency bin index, and £ the frame index. The MCRA ap-
proach for noise spectrum estimation [8, 9] is to recursively
average past spectral power values of the noisy measure-
ment, using a smoothing parameter that is controlled by
the minima values of a smoothed periodogram. The recur-
sive averaging is given by

Aa(k, 641) = aa(k, O)Aalk, O)+B-[1—aa(k, O1Y (k, O))> (1)

where S\d(k,ﬁ) is an estimate for the noise spectrum
E{|D(k,[)|2}7 aq(k,0) is a time-varying frequency-
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Fig. 1. Block diagram of the MCRA noise spectrum estimation.

dependent smoothing parameter, and 3 is a factor that com-
pensates the bias when speech is absent [9]. The smoothing
parameter i1s determined by the speech presence probabil-
ity, p(k,?), and a constant aq (0 < aq < 1) that represents
its minimal value:

&a(k, 0) 2 aa+ (1 —aa)p(k, (). (2)

When speech is present, &4 is close to one, thus prevent-
ing the noise estimate from increasing as a result of speech
activity. As the probability of speech presence decreases,
the smoothing parameter gets smaller, facilitating a faster
update of the noise estimate.

Assuming a Gaussian statistical model [10], the speech
presence probability is given by

plk, 1) = {1 + %(1 +a(k,0)exp(—u(k,a)}_

A
>

where ~y(k, {) 2 |Y(k,[)|2 [Aa(k,£) and &(k,£)
E{|X(k,[)|2}/)\d(k,ﬁ) are respectively the a posteriori
and a priori SNRs, ¢(k,{) is the a priori probability for
speech absence, and v = vE/(1+€).

The a prior: SNR is estimated by [8]

£(k, £) = aGy, (k, £=1)y(k, £=1)+(1—a) max {y(k, {) — 1,0}
(1)

where « is a weighting factor that controls the trade-off

between noise reduction and speech distortion, and

o £h0) 1r et
Gy, (k,0) = 1+€(k7z)exp (2 [J(kyz) ; dt) (5)

is the spectral gain function of the Log-Spectral Amplitude
(LSA) estimator when speech is surely present' [11]. The a
priori speech absence probability is estimated by [9]

1, if ~Yumin (k, €) < 1
and ¢(k,€) < (o
Gk, 0) = § 2=2min0 - E ] <y (k) <0 (6)
and ¢(k,€) < (o
0, otherwise.

where Ymin(k, €) 2 [Y(k, O /(BminSmin(k, £)), C(k, £) =
S(k, £)/(BminSmin(k,£)), vo and (o are constants satisfying

I'Notice that under speech presence uncertainty, é(k, £) differs
from the “decision-directed” estimator of Ephraim and Malah
[10]. Its advantage, particularly for weak speech components
and low input SNR, is discussed in [8].

a certain significance level,

S(k, £) = oSk, £ — 1) 4+ (1 — ) Zw: b(3) Y (k —1,0)]?

t=—w

denotes a smoothed spectrogram of the noisy signal, «.
(0 < as < 1) is a smoothing parameter, b is a normalized
window function of length 2w + 1 (i.e., Z?}:_w b(r) =1),

Smin(k,£) = min {S(k, €') | =D +1< ¢ < £}

is a running minimum of S(k, £) using a finite length window
of D frames, and Bnin is a constant independent of the
noise power spectrum such that

E{Smin(k, £) | £(k,0) =0} = Bl - Aa(k, €).

A block diagram of the MCRA noise spectrum estimation
is shown in Fig. 1. Typical values of parameters used in the
implementation of the MCRA algorithm, for a sampling
rate of 16 kHz, are: g = 0.85; 8 = 1.47; a = 0.92; as =
0.9; v0 = 3; (o = 1.67; w = 1; D = 120; Bpin = 1.66. In
this case, the short-term Fourier transform is implemented
with Hamming windows of 512 samples length (32 ms) and
128 samples frame update step.

The main advantage of estimating the a priori speech
absence probability by combining conditions on both
Ymin(k, £) and ((k, £) is the exclusion of speech components
from the averaging process, hence the prevention of an in-
crease in the estimated noise during weak speech activity.
Speech components are generally determined by the con-
dition on ((k,f¢). Some speech components are so weak
that ¢(k,¢) is smaller than {p. In that case, the condition
on 'ymin(k,ﬁ) becomes useful. The remaining speech com-
ponents can hardly affect the noise estimator, since their
power is relatively low compared to that of the noise.

3. MICROPHONE ARRAY POST-FILTERING

In this section, we extend the MCRA approach to micro-
phone array post-filtering. While a conventional post-filter
is effective for handling pseudo-stationary noise at the out-
put of a beamformer, highly non-stationary noise compo-
nents are generally not attenuated since they are not differ-
entiated from the speech components. Our objective is to
exploit the relation between the beamformer primary out-
put and the reference noise signals in order to make a dis-
tinction between non-stationary noise and non-stationary
speech.
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Fig. 2. Block diagram of the microphone array post-filtering.

Fig. 2 shows a block diagram of the proposed micro-
phone array post-filtering. The beamformer primary out-
put Z, and the reference noise signals {Z,}f\il_l (where M
is the number of microphones in the array) are obtained
by adaptively aiming the beamformer at the desired speech
source and noise sources, respectively [7]. Each signal,

Zo(k, £) = Xo(k, €) + Doe(k, €) + Doi(k, €)
Zi(k, €) = Xi(k,€) + Dio(k, £) + Dt (k, ), i =1, ..

(7)
GM -1

comprises three components. The first is a non-stationary
component due to the desired speech signal. The other two
are stationary and transient noise components. The speech
is presumably strongest at the primary output. On the
other hand, a noise component is strongest at one of the
reference signals. Hence, the ratio between the transient
power at the primary output and the transient power at
the reference signals may be used for indicating whether
such a transient is desired or interfering.

Let Sp(k,£) and {Si(k,£)} 7! denote smoothed spec-
trograms of the beamformer output signals, and let
A;™ (K, £) and {)\fm(k,ﬁ)}fil_l represent the respective esti-
mates of the noise spectrum by the MCRA method. Then,
the transient beam-to-reference ratio (TBRR) is defined by

max {Sb(k7 Z) — )‘im(kv Z)v 0}
max {{Si(k, £) = X5 (k, Y71 eXgm (K, 0) )
(®)
where ¢ (typically e = 0.01) prevents the denominator from
decreasing to zero in the absence of a transient power at the
reference signals. The a priori speech absence probability
is estimated by

L i (K, £) < Lor vk, €) < v

4k, 0) = o - .
’ max { Jo %ﬂf‘l(k’z) , prhh’ghh _Qi(lk’z) 70} , otherwise,
ig ow
(9)

where 910w and Ynign are constants that represent the un-
certainty in (k, {) during weak speech activity (typically
Yiow = 1, Yrigh = 3). Substituting §(k, £) into (3) and
computing a smoothing parameter by (2), we obtain the fol-
lowing estimate for the noise spectrum at the beamformer
primary output:

Xa(k, £+ 1) = aa(k, O)Xa(k, £) + B[1 — aalk, 0)]| Zo(k, 0)]? .
(10)

bk, £) =

This estimate takes into account the transient, as well as
stationary, noise components. Fed into an appropriate spec-
tral enhancement algorithm (e.g., the Optimally-Modified
Log-Spectral Amplitude (OM-LSA) estimation technique
[8]), we achieve a robust estimate for the desired speech
component, )A(b(k,ﬁ). In particular, improved noise sup-
pression capability is obtained, even under adverse condi-
tions (low SNR, incoherent or diffuse noise fields, highly
non-stationary babble, factory or car noise, etc.), while re-
taining weak speech components and avoiding the musical
residual noise phenomena.

4. EXPERIMENTAL RESULTS AND
DISCUSSION

To validate the usefulness of the proposed post-filtering ap-
proach under non-stationary noise conditions, we compare
its performance to a single-channel post-filtering in a car
environment. Specifically, the speech at the beamformer
primary output is enhanced using the OM-LSA estimator,
while the noise spectrum is obtained either by the method
described in the previous section or by the single-channel
MCRA technique.

A linear array, consisting of four microphones with 5
cm spacing, is mounted in a car on the visor. The clean
speech signals are recorded at a sampling rate of 16 kHz
in the absence of background noise (standing car, silent
environment). The noise signals are separately recorded
when the windows are slightly open (about 5 c¢m), and the
car speed is about 60 km/h. The input microphone signals
are generated by mixing the speech and noise signals at
various SNR levels.

Fig. 3 demonstrates the capability of the microphone-
array post-filtering to handle abrupt changes in the noise
spectrum. Trace of the increase in segmental SNR, gained
by the microphone array post-filtering over the single-
channel post-filtering is depicted in Fig. 4. The statistics of
background noise varies substantially due to a passing car.
Additionally, a short burst of low frequency noise follows
at about 3.6 sec. The improvement in performance over
the single-channel post-filtering is obtained when the noise
spectrum fluctuates. In some instances the improvement in
SNR surpasses as much as 8 dB. Clearly, a single-channel
post-filter is inefficient at attenuating highly non-stationary
noise components, since it lacks the ability to differenti-
ate such components from the speech components. On
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Fig. 3. Speech spectrograms. (a) Noisy signal at a single microphone (car noise, SegSNR = 0 dB); (b) Beamformer output
(SegSNR = 4.2 dB); (c) Beamformer output enhanced by a single-channel post-filtering (SegSNR = 10.1 dB); (d) Beamformer
output enhanced by a microphone array post-filtering (SegSNR = 12.8 dB).

the

other hand, the microphone-array post-filter achieves

a significantly reduced level of background noise, whether
stationary or not, without further distorting speech com-

ponents.

This is verified by subjective informal listening

tests.
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