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ABSTRACT

In this paper, we present an optimally-modified log-
Spectral Amplitude estimator, which minimizes the mean-
square error of the log-spectra for speech signals under sig-
nal presence uncertainty. The spectral gain function is ob-
tained as a weighted geometric mean of the hypothetical
gains associated with signal presence and absence. The
exponential weight of each hypothetical gain is its corre-
sponding probability, conditioned on the observed signal.
We introduce an efficient estimation approach for the a pri-
ori signal absence probability in each frequency bin, which
exploits the strong correlation of speech presence in neigh-
boring frequency bins of consecutive frames. Objective and
subjective evaluation confirm superiority in noise suppres-
sion and quality of the enhanced speech.

1. INTRODUCTION

Recently, the use of a soft-decision gain modification in
speech enhancement algorithms has been the object of con-
siderable research. While traditional spectral enhancement
techniques estimate the clean speech spectrum under signal
presence hypothesis, a modified estimator, which incorpo-
rates the a priori probability of speech absence, generally
yields better performance [1]-[8].

The Log-Spectral Amplitude (LSA) estimator , was de-
veloped by Ephraim and Malah [1] to minimize the mean-
square error of the log-spectra. Although showed superior
performance in eliminating noise, its modification under sig-
nal presence uncertainty was believed “unworthy”. That as-
sertion was re-emphasized by Malah et al. [2], who proposed
a multiplicatively-modified, rather than optimally-modified,
LLSA estimator.

A central issue in [2] is a method for estimating the a
priori probability of speech absence, g, for each frequency
bin in each frame. The authors were puzzled, however, by
the fact that their method was not advantageous over using
a fixed ¢ = 0.5. Furthermore, the interaction between ¢ and
the a priori signal-to-noise ratio (SNR) adversely affected
the total gain for noise-only bins, and resulted in a “musical
residual noise” with an unnatural structure [3].

An alternative approach [4] is to use a small fixed ¢ (¢ =
0.0625) and a multiplicative modifier, which is based on the
global conditioned speech absence probability in each frame.
This modifier is applied to the a priori and a posteriori
SNRs. Not only such a modification is inconsistent with
the statistical model, but also insignificant due to the small
value of ¢ and the influence of a few noise-only bins on the
global speech absence probability.
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Fig. 1. A block diagram of speech enhancement configura-
tion under signal presence uncertainty.

Synthesis
Window

In this paper, we present an optimally-modified LSA es-
timator. The optimal spectral gain function is obtained as
a weighted geometric mean of the hypothetical gains asso-
ciated with the signal presence uncertainty. The exponen-
tial weight of each hypothetical gain is its corresponding
probability, conditioned on the observed signal. To derive
the conditioned signal presence and absence probabilities,
we introduce an efficient estimator for the a priori signal
absence probability, based on the time-frequency distribu-
tion of the a priori SNR. The estimation is implemented for
each frequency bin in each frame through a soft-decision ap-
proach, which exploits the strong correlation of speech pres-
ence in neighboring frequency bins of consecutive frames.

Objective and subjective evaluation of the optimally-
modified LSA estimator is performed under various environ-
mental conditions. It is shown that the proposed modifica-
tion approach is superior, particularly for low input SNRs
and non-stationary noise. A real time test demonstrates
that a 25 dB noise reduction can be achieved even in the
most adverse noise conditions, while avoiding musical resid-
ual noise and the attenuation of weak speech components.

2. OPTIMAL GAIN MODIFICATION

Let #(n) and d(n) denote speech and uncorrelated additive
noise signals, respectively, where n is a discrete-time index.
The observed signal y(n), given by y(n) = z(n) + d(n),
is divided into overlapping frames by the application of a
window function and analyzed using the short-time Fourier

transform (STFT). Specifically,

Yk, €)= > ha(n)-yln + (M — M,)] - exp(—2%) (1)
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where k is the frequency bin index, £ is the time frame index,
hq is an analysis window of size M (e.g., Hanning window),
and M, is the number of overlapping samples in consecutive
frames. Given two hypotheses, Hy(k, £) and H,(k, £), which
indicate respectively speech absence and presence in the kth
frequency bin of the fth frame, we have

Ho(k, ) :
Hi(k,£)

Yk, €) =
Y (k, €)

D(k, £)
Xk O)+ Dk 6)  (2)

where X (k,¢) and D(k, () represent the STFT of the clean
and noise signals, respectively. Assuming a complex Gaus-
sian distribution of the STFT coefficients for both speech
and noise [5], the conditional PDFs of the observed signal
are given by
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p(Y (k, O)| H(k, £))

7(Az(k, £) + Aa(k, 0))
2

[Y(k, £)
- exp {_)\m(hﬁ) + da(k, £) }(3)

where A, (k,£) = E[|X(k,¢)|*] and Xa(k,€) = E[|D(k, £)]*]
denote respectively the variances of speech and noise. Ap-
plying Bayes rule for the conditional signal presence prob-
ability, one obtains

Ak, 0)

m é P(k7 Z) (4)

P(H1(k, OY (K, ) =

where A(k, ) is the generalized likelihood ratio defined by

1 a(k, £) .p(Y(k7Z)|H1(k7Z))
MEO==00 ok oimr ) 7
and q(k, £) 2 P(Hoy(k,?)) is a priori probability for speech

absence. Let n(k, ¢) and ~(k,f) denote the a priori and a
posteriori signal-to-noise ratios [6, 5],

Aok, €)
Xa(k, €)

s [Y(k, 0

n(k, £) ko ©

Yk, 0) £

substituting (3) and (5) into (4), we have

p(k, 0) = { + %(1 + n(k, 4))exp(—v(k¢’))}_
(7)

where
a y(k, On(k, )
1+ 77(’@ Z) . (8)

An estimate of the clean speech spectrum is obtained by
applying a specific gain function to each spectral component
of the noisy speech signal: )A((k7 £) =Gk, )Y (k,£). Among
various existing speech enhancement methods, which can be
represented by different spectral gain functions, we choose
the LSA estimator [1] due to its superiority in reducing
musical noise phenomena. The LSA estimator minimizes

v(k, €) =

E{(log A(k, ) —log A(k, £))*}

where A(k, () =
plitude, and A(k,ﬁ) its optimal estimate. Accordingly [1],

| X (k,¢)| denotes the spectral speech am-

A(k,0) = exp {Elog A(K, O]V (5,01} (9)
Based on the statistical model,

E [log A(k, O)Y (k, 0)]
= E[log A(k,[”Y(k,Z)’ Hl(k,Z)]p(k,Z)
+E [log Ak, O)[Y(k, £), Ho(k, )] (1 = p(k, £)) . (10)

When speech is absent, the gain is constrained to be larger
than a threshold Gy, which is determined by a subjective
criteria for the noise naturalness [9, 8]. Accordingly,

exp {E[log A(k, O)|Y(k, ), Ho(k, £)]} = Gmin - |Y(k,[z| . :
11

When speech is present, the conditional gain function, de-

fined by

exp{E [log Ak, O)|Y(k, (), Hi(k, 0)]} = Gg, (K, Z)|Y(k,(f)|),
12
is derived in [1] to be

o0 —t
Mexp (l/ 6_dt) . (13)
1+ n(k, ?) L

Hence the gain function for the optimally-modified LSA
estimator is obtained by

G(k,0) = {G, (k, )} . gLe9 (14)

min

Gy, (k,0) =

A block diagram of the speech enhancement configuration
under signal presence uncertainty is described in Fig. 1.

Notice that in [2] the spectral gain function is not
bounded by a lower threshold, which leads to a meaningless
gain modification and a false conclusion that “it is unwor-
thy to incorporate signal presence uncertainty in the LSA
estimator” [1, 2]. Moreover, according to [2] the a priori
SNR should be conditioned on the presence of speech, i.e. n
should be replaced in (7), (8) and (13) with n/(1—gq), where
n is obtained using a decision-directed estimation approach
[5, 1]. However, the derivation of the a priori SNR estimator
with a decision-directed approach already assumes presence
of speech. Clearly, the a priori SNR, estimated by

% _ 2
Xk €=

ik, €) = Xa(k, €—1)

+(1—a)max {v(k,£) — 1,0} (15)

is conditioned on the Hi(k,{) hypothesis. This misconcep-
tion might explain some of the puzzling results mentioned
n [2, 3, 4].

3. A PRIORI PROBABILITY FOR SIGNAL
ABSENCE ESTIMATE

In this section we derive an efficient estimator §(k, ) for the
a priori signal absence probability. This estimator uses a
soft-decision approach to compute three parameters based
on the time-frequency distribution of the estimated a priori
SNR, rj(k, £). The parameters exploit the strong correlation
of speech presence in neighboring frequency bins of consec-
utive frames.
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Fig. 2. A block diagram for computing Pframe (a parame-
ter representing the likelihood of speech in a given frame).

Ppame (1) = (L)

Let £(k,£) be a recursive average of the a priori SNR
with a time constant 3,

§(k, ) = BE(k, L= 1) + (1= B)n(k, £—1).  (16)

By applying local and global averaging windows in the fre-
quency domain, we obtain respectively local and global av-
erages of the a priori SNR:

W

Gk )= Y ha@)Ek—i,0) (17)

1=—wy

where the subscript A designates either “local” or “global”,
and h) 1s a normalized window of size 2wy + 1. We define
two parameters, Piocai(k,?) and Pgiopai(k, £), which repre-
sent the relation between the above averages and the like-
lihood of speech in the kth frequency bin of the fth frame.
These parameters are given by

0, if €>\(k,f) < min

Pa(k, €)= { 1, if Ex(k,0) > &maz (18)
log(6r (k.0 femin) ~ otherwise.
log(§mazx [Emin)
where &min and Emqr are empirical constants, maximized to
attenuate noise while maintaining weak speech components.

In order to further attenuate noise in noise-only frames,
we define a third parameter, Pframe(£), which is based on
the speech energy in neighboring frames. An averaging of
&(k, £) in the frequency domain (possibly over a certain fre-
quency band) yields

&k, 0} (19)

To prevent clipping of speech startings or weak components,
speech is assumed whenever €frame(~) increases. Moreover,
the transition from H; to Hy is delayed, which reduces the
misdetection of weak speech tails, by allowing for a certain
decrease in the value of £frame. Fig. 2 describes a block
diagram for computing Pframe(f), where

07 if gframe(z) S gpeak(z) . gmzn

C(Z) é 17 if gframe(z) Z gpeak(z) . gma.r
log (§frame () /épeak (O) [Emin)
log(&maw /Emin) ’

f) = mean
Errame (£) 1<k<M[241

otherwise ,
(20)

M =512 Wiocal = 1 gpmin = 0dB
M,=3%4  wgopa = 15 €pmax = 10dB
a =0.92 émin = —10dB Gpin = —25dB
B=07 Eman = —5dB Gmas = 0.95

Table 1. Values of parameters used in the implementation
of the optimally-modified LSA estimator.

represents a soft transition from “speech” to “noise”, &peak
is a confined peak value of £¢rame, and €pmin and {pmax are
empirical constants that determine the delay of the transi-
tion.

The proposed estimate for the a prior: probability for
speech absence is obtained by

G(k,0) =1 = Procat(k, £) - Pgiovar(k, €) - Prrame(€) . (21)

Accordingly, §(k, ) is larger if either previous frames, or
recent neighboring frequency bins, do not contain speech.

When ¢(k,{) — 1, the conditioned signal presence prob-
ability p(k,¢) — 0 by (7), and consequently the gain func-
tion reduces to Gpmin by (14). Therefore, to reduce the pos-
sibility of speech distortion we restrict §(k,£) to be smaller
than a threshold ¢maz (gmaz < 1).

4. PERFORMANCE EVALUATION AND
DISCUSSION

The optimally-modified LSA estimator was compared to
the multiplicatively-modified LSA estimator [2] and to the
original STSA and LSA estimators [5, 1]. A clean speech
sentence “Draw every outer line first, then fill in the in-
terior,” spoken by a female and sampled at 16 kHz, was
degraded by non-stationary car noise and white Gaussian
noise with global SNR in the range [—5,10] dB. The eval-
uation consisted an objective segmental SNR measure [10],
a subjective study of speech spectrograms and informal lis-
tening tests.

Table 1 summarizes the values of parameters used in
the implementation of the proposed algorithm. We chose
Hanning windows in (1) and (17). The noise power spec-
trum, Aq(k, £), was estimated from the noisy signals using
the Minima Controlled Recursive Averaging (MCRA) ap-
proach [11].

The segmental SNR improvements obtained by the
above-mentioned estimators are compared in Table 2. This
measure takes into account both residual noise and speech
distortion. The proposed estimator achieves the best results
under all noise conditions. Its superiority is more significant
for low input SNRs and non-stationary noise.

Since the segmental SNR lacks indication about the
structure of the residual noise, a subjective comparison was
conducted using speech spectrograms and validated by in-
formal listening tests. Example of speech spectrograms ob-
tained by the proposed algorithm are shown in Fig. 3. In
contrast to other methods, where high a posteriori SNR pro-
duces high spectral gain resulting in a random appearance
of tone-like noise (musical-noise phenomena), the proposed
method attenuates noise by identifying noise-only regions
(d — qm(w) and reducing the gain correspondingly to Gpmiy.
Yet, it avoids the attenuation of weak speech components
by letting § descend to zero in speech regions.



Car Noise White Gaussian Noise
Noisy Speech SNR (dB) -5.0 0.0 5.0 10.0 -5.0 0.0 5.0 10.0
Noisy Speech Segmental SNR (dB) | -13.21  -8.21 -3.21 1.78 -14.47  -9.47  -4.47 0.53
Enhancement Method Segmental SNR Improvement (dB) | Segmental SNR Improvement (dB)
STSA, No Modification (g = 0) [5] 8.38 7.72 7.25 6.87 8.81 8.26 7.57 6.68
LSA, No Modification (g = 0) [1] 10.55 9.41 8.73 8.36 11.11 10.28 9.24 7.94
Multiplicatively-Modified LSA [2] 13.22 11.30 10.22 9.87 13.94 12.58 11.03 9.13
Optimally-Modified LSA 13.99 11.81 10.72 10.16 14.39 12.88 11.16 9.16

Table 2. Improvements in segmental SNR with the optimally-modified LSA estimator, compared to other estimators, for
various environmental conditions.
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Fig. 3. Speech spectrograms: (a) Original clean speech signal: “Draw every outer line first, then fill in the
interior.”; (b) Noisy speech in the case of additive car noise (SNR= 0dB, SNR.., = —8.21dB); (c¢) Decision-
directed a priori SNR estimate (1}); (d) A priori probability for signal absence estimate (§); (e) Modified spectral
gain; (f) Speech enhanced with the proposed method (SNR..y Improvement= 11.81dB).
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