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Abstract 
 

In this paper, we introduce a time-varying short- 
time Fourier transform (TV-STFT) for representing 
discrete signals. We derive an explicit condition for 
perfect reconstruction using time-varying analysis 
and synthesis windows. Based on the derived 
representation, we propose an adaptive algorithm 
that controls the length of the analysis window to 
achieve a lower mean-square error (MSE) at each 
iteration. When compared to the conventional 
multiplicative transfer function approach with a 
fixed length analysis window, the resulting algorithm 
achieves faster convergence without compromising 
for higher steady state MSE. Experimental results 
demonstrate the effectiveness of the proposed 
approach. 
 
1. Introduction 
 

System identification in the short-time Fourier 
transform (STFT) domain of linear time-invariant 
(LTI) systems is widely used in speech processing 
applications  [1]- [6]. System identification in the 
STFT domain generally requires crossband filters 
between the subbands  [4]. Nonetheless, when the 
STFT’s analysis window is long and smooth in 
comparison to the system’s impulse response, a 
single multiplicative term can be employed in each 
frequency bin. This approach is generally referred to 
as the multiplicative transfer function (MTF) 
approximation  [6].  Since in real-world applications, 
the system to be identified is time-varying, adaptive 
estimation algorithms are required, using a finite 
amount of samples. In order to achieve a more 
accurate approximation and low steady-state error of 
the MTF approach, the analysis window should be as 
long and smooth as possible. However, a long 
window yields slower convergence than a shorter 
one. As a consequence, when choosing the analysis 
window length this trade-off has to be considered.   

In this paper, a time-varying STFT (TV-STFT) is 
defined using a time-varying window length. In 
addition, a time-varying inverse STFT (TV-ISTFT) 

is derived, and a perfect reconstruction is achieved 
by enforcing a generalized form of the completeness 
condition. Based on the MTF approximation, an 
adaptive scheme for system identification, which 
utilizes the dynamic nature of the TV-STFT domain, 
is presented. Using a time-varying window length, 
the resulting algorithm achieves a relatively low 
steady state error without degrading its convergence 
rate. 

This paper is organized as follows. In Section 2, 
the TV-STFT and TV-ISTFT are defined, and a 
perfect reconstruction condition is obtained. In 
Section 3, an adaptive scheme for system 
identification is presented in the TV-STFT domain. 
In Section 4, experimental results demonstrate the 
effectiveness of the proposed approach. 
 
2. Time-Varying STFT 
 

The STFT of a signal  is defined by  [7]: 
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where  is an analysis window of length ,  
is the decimation factor,  is the frame index and  
is the frequency-bin index. The ISTFT of ,  

can 
be computed using the well known overlap and add 
formulation: 
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where  is a synthesis window of length . 
Substituting (1) into (2) and enforcing perfect 
reconstruction of  leads to the completeness 
condition  [7]: 
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Let us define a time-varying STFT (TV-STFT) of 
 by: 
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where , is a time-varying analysis window, 
whose length  is a piece-wise constant 
function: 
 1( ) 1, 2,..,N t N t t t Vν ν ν ν−= < ≤ =  (5) 
and  is the number of discontinuity points. 
Let  denote a time varying decimation factor such 
that a fixed overlap is preserved: 
 .N L constν ν ν= ∀  (6) 
The windows are centered at the time instants Γ 
defined by: 

 
{

( ) }
1 1

0 1

,

0 /, .

t t rL t t t

t r t t L

t ν ν ν ν

ν νν

− −

−

= + ≤ <

= −∞ ≤ ≤ −

Γ =
 (7) 

Similarly to (2), the TV-ISTFT can be expreseed as:  
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Finally, substituting (4) into (8) and enforcing 
perfect reconstruction, yields the generalized form 
of the completeness condition: 
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In order to demonstrate the structure of the 
analysis and synthesis windowing process, a simple 
case is presented, in which the analysis-window 
length is varied once: 
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The decimation factor is chosen so that the overlap 
between consecutive windows is retained, i.e., 
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and the analysis windows centers are: 
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Note that the continuity of the window functions 
should be preserved when switching from   
to . Then, since the number of windows 
having non-zero values at the transition point  is:  
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the continuity can be preserved by interlacing 
  and : 
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Specifically, for /2 , the windowing 
process is emploid using , , and for 

/2 , the windowing process will continue 
using , . A simple example for this 
windowing process is demonstrated in Figure 1, in 

which 75% overlap leads to 3 interlaced 
windows around the transition point 512. 
 

 
Figure 1. Time invariant windowing using a 

Hamming window (a) 128, 32N L= = ; (b) 
384, 96N L= = ; (c) a time varying windowing 

process switching from 1 1128, 32N L= =  (blue) to 

2 2384, 96N L= = (black), at the transient point 

1 512t = using three interlaced windows (red dot). 
 
The synthesis windows should sustain the 
generalized form of the completeness condition 
(equation (9)): 
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Recall that the analysis windows ,  
and their synthesis matches ,  satisfy 
(3). Since equation (3) holds for all , it also holds 
particularly for , which means that  
and  sustain equation (9) in this time 
interval, so   can be used as a synthesis 
window for . A similar claim can be made 
regarding  and  , for . 
Altogether, the windowing process of the TV-ISTFT 
divides the time domain into three parts: before, 
during and after the transition, that is,  
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where 
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This formulation can be extended for any 
countable number of variation points, as long as the 
interlacing structure of the analysis and synthesis 
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windows is preserved. That is, at the non-transient 
frames (i.e., /2 /2 ) 
the TV-STFT and its inverse are computed using 
  , , . At each transition point , 
 interlaced windows [see (13)] should be used to 

switch from  to . The following frames 
should be analyzed and synthesized using 
 , ,  , up to the next 

transition point.  
 

3. Adaptive System Identification Using 
TV-STFT 
 

In this section we consider the problem of  
system identification using the previously defined 
TV-STFT. Let  and  be the input and 
output of an unknown LTI system, represented by its 
impulse response , with additive noise , 
i.e.,  
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The goal of system identification schemes is to 
estimate  based on samples of the input and 
output signals. In many practical cases (such as  [4]-
 [6]), this estimation is performed adaptively in the 
STFT domain to achieve both fast convergence and 
low computational cost. Applying the STFT on (18) 
produces: 
 , , ,p k p k p ky d ξ= +  (19) 

Assuming that the analysis window  is much 
longer and smoother in comparison to the impulse 
responce , the MTF approximation can be 
applied  [6]: 
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The effect of the analysis window length on the 
estimation error was explored in  [6], and a trade-off 
between the convergence rate and the steady-state 
value of the estimation error was presented. In order 
to avoid this trade-off, the TV-STFT can be 
employed. Specifically, at the beginning, a short 
window should be used in order to achieve fast 
convergence. Then, as the adaptation process 
proceeds, the algorithm should gradually increase 
the window length to produce a lower steady state 
MSE. Using the TV-STFT with the windowing 
process defined in (5)-(7) and the MTF 
approximation, (18) becomes:  
 ( )

, , , , ,t k t k
N t

k t k kkt ty hd xξ ξ= + ≈ +⋅  (22) 
where ℓ are the time instants Γ sorted in an 
ascending order so  ℓ ℓ ℓ . At the non-
transient frames, the adaptive estimation of the 

system using the normalized least-mean-square 
(NLMS) algorithm is identical to the one described 
in [5], using the appropriate window lengths and 
decimation factors. Denote: ℓ  and  

ℓ , the NLMS equations are: 
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During the  transient frames,  is evaluated 
using interlaced windows defined in equation (14), 
which means that its frequency–bins are not evenly 
spaced: 
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Equation (23) cannot be used directly in these 
frames, since the frequency-bins resolution and the 
amount of estimated system coefficients do not 
match. In order to resolve this problem while 
preserving the continuity of the system 
identification process, the coefficients related to 
mismatched frequency-bins should be adjusted 
before forwarded to the next frame. The estimated 
impulse response can be obtained by: 
 ( ) ( ) ( ){ }ˆ .t N

N kh n IDFT h tν
ν

=  (25) 

Switching to the next frequency–bins resolution is 
performed by employing  order DFT: 

 ( ) ( ) ( ) ( ){ }1
1

ˆ .N t t
Nkh t DFT h n
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To conclude, the required modification by the 
adaptive process is back and forward DFT according 
to the current and next window lengths. This 
adjustment ensures the continuity of the system 
identification process. 
 
4. Experimental Results 
 

In this section, two simulations are presented. 
The first one uses white Gaussian noise as input in 
order to validate the analysis described above. The 
second simulation shows the applicability to 
acoustic echo cancellation by using a speech signal. 
Hamming window was taken as the analysis 
window with 50% overlap, and the synthesis 
window was its bi-orthogonal window. The noise 
signal  is white, zero mean, and Gaussian with 
SNR of 30dB: 
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where  is the variance of the input signal , 
and is the variance of the noise signal . 
The system’s impulse response was modeled as a 
white Gaussian noise  multiplied by an 
exponential decay:  
 ( ) ( ) ( ) nh n w n n e αβ −=  (28) 
And  was taken as a rectangular window:  
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The decay exponent that was used: 0.03. The 
decimation factor was taken so a fixed overlap of 
50% was sustained. 
 
4.1. White Gaussian Noise 
 

The input signal  was taken as white, zero 
mean, unit variance Gaussian noise, uncorrelated 
with . The performance of the system 
identification was evaluated during 24,000 samples 
using the normalized mean square error (MSE) in 
the time domain: 
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where  is the TV-ISTFT of ,
ˆ

t kd . 
The mean was taken over 500 uncorrelated 
experiments. The impulse response was 16 samples 
long and was changed when convergence has been 
achieved – after 9,200 samples. Figure 2 shows the 
window lengths function  that was used by the 
TV-STFT simulation. The shorter windows were 
used both at the beginning of the estimation and 
when the impulse response was changed. Figure 3 
shows the normalized error for various window 
lengths using the conventional STFT and the TV-
STFT. A smoothed version of these curves is 
presented in Figure 4. 
 

 
Figure 2. Window length function N(n) used for 

the TV-STFT in the white Gaussian noise 
simulation. 

 

 
Figure 3. Normalized MSE curves using fixed 

window lengths (64, 128, 512, 1024 samples), and 
TV-STFT. The impulse response was changed 

after 9200 samples 
 

 
Figure 4. Smoothed (using Hamming 

window) noramlized MSE curves using 
fixed window lengths (64, 128, 512, 1024 
samples), and TV_STFT. The implulse 

response was changed after 9200 samples. 
 

Two methods for updating the estimated system 
coefficients at the transient frame were compared: 
One using IDFT and zero padded DFT as described 
above, and the second - by using cubic interpolation. 
Since both methods produced very similar results, 
the cubic interpolation was chosen in order to ease 
the complexity load. 

The trade-off between the convergence rate and 
the steady-state value is well demonstrated: the 
shortest window (64 samples) converges very 
quickly, but to a relatively high value. The longest 
window (1024 samples) achieves the lowest steady-
state value, but with a very long convergence 
duration. This attribute is shown both at the 
beginning of the estimation and when the impulse 
response is changed. 
It is clear that the error obtained by the TV-STFT 
produced the lowest error during the whole 
simulation.  
Performing STFT and ISTFT is equivalent to using 
analysis and synthesis filter bank  [7]. The output of 
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a synthesis filter bank is generally cyclo-stationary 
 [8], so this is the reason for the periodic nature of 
the estimation error in Figure 3. In practical 
applications, there is no averaging over the 
estimation error, so this phenomenon is not 
disturbing.  
 
4.2. Acoustic Echo-Cancellation 
 
In this simulation a practical usage for system 
identification using TV-STFT is demonstrated. 
Acoustic echo cancellation (AEC) can be modeled 
using equation (18): the input signal  is the far-
end signal coming out of a loudspeaker. The echo 
path of the room, from the loudspeaker to an 
adjacent microphone, is modeled by .  is an 
additive white Gaussian noise, and the output signal 

 is the recording microphone signal. In the 
simulation, the input signal  was a speech signal 
sampled at 16kHz during 4 seconds. A 64 samples 
long impulse response was changed after 2 seconds. 
 

 
Figure 5. Window length function N(n) used for 

the TV-STFT in the AEC simulation 
 

 
Figure 6: Speech waveforms and error signals. 

The impulse response was changed after 2secs. 
(a) Far-end Signal; (b) near-end signal; (c)-(e) 

error signals for N=128, N=512, N=1024 
respectively; (f) TV-ISTFT using N=[128 512 

1024] starting at t=0secs and t=2secs. 
 

Figure 6 (a)-(b) shows the far-end speaker and the 
microphone signal respectively. The error signals 
Figure 6 (c)-(f) were calculated by applying TV-
ISTFT on the error signals obtained by (23). A fixed 
window length of 128, 512, 1024 samples was used 
in Figure 6 (c)-(e) respectively. The TV-STFT was 
used in Figure 6 (f) with window length function 

 as depicted in Figure 2. 
The fixed window estimation error suffers the 

same trade-off as before, whereas the TV-STFT 
achieves low error all through the estimation 
process. 
 
5. Conclusions 
 

A time-varying STFT (TV-STFT) was introduced 
using a time-varying window length, and its inverse 
transform was calculated. A perfect reconstruction 
condition was explored and formalized. An adaptive 
scheme for system identification utilizing the 
dynamic nature of the TV-STFT domain was 
presented. Performing adaptive system identification 
using conventional STFT leads to a trade-off 
between the convergence rate and steady state value 
of the estimation error. Using a time varying window 
function resolves this trade-off and produces lower 
estimation error, and faster convergence rate. 
Experimental results confirmed that the TV-STFT 
approach outperforms the conventional STFT 
approach.    

Further work can be done concerning the time 
varying window function. In particular, derivation of 
the optimal values and the transition points online 
while considering the current stage of the estimation 
process and the instantaneous SNR conditions. 
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