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Abstract

Circular differential microphone arrays (CDMAs) are characterized as compact superdirective
beamformers whose beampatterns are almost frequency invariant. In contrast to linear differen-
tial microphone arrays (LDMAs) where the optimal steering direction is at the endfire, CDMAs
provide almost perfect steering for all azimuthal directions. Herein, we present the design of a
first-order CDMA in the time domain which is motivated by several aspects. First, time-domain
implementation is important in some applications where minimal delay is required, such as real-
time communications. Moreover, direct design in the time domain can reduce the computational
efforts compared to the frequency-domain design, especially when short filters are sufficient. We
present a design example for the time-domain first-order CDMA illustrating some of its fundamen-
tal properties as well as the equivalence to the frequency-domain alternative.
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1 Introduction
Differential microphone arrays (DMAs) can be integrated into several real-world beamforming
applications involving speech signals, e.g., hands-free telecommunication, mobile phones, and
others. DMAs, which is a family of small size-array beamformers and include the well-known
superdirective beamformer [1] as a particular case, have beampatterns that are almost fre-
quency invariant, leading to greatly intelligible signals even in heavy reverberant and noisy
environments. Due to these benefits, DMAs have attracted a significant amount of interest in
the field of broadband microphone array processing during the past decade [2]-[7].

Broadband array processing algorithms can be implemented both in the time and frequency
domains. Design in the time domain is important for real-time applications that require small
delays [9]. Furthermore, in some cases the implementation of time-domain filters is computa-
tionally more efficient than the equivalent frequency-domain filters, especially when short filters
are sufficient. The advantage of the frequency-domain implementation is mainly due to the
ability to implement some frequency-dependent processing algorithms, like frequency-selective
null-steering.

Previous work on DMAs dealt with linear array geometry which is optimal only at the endfire
direction. In some applications like teleconferencing and 3D sound recording where the signal
of interest may come from any direction, it is necessary for the microphone array to have
similar, if not the same response from one direction to another. In this case, circular arrays are
often used. Recently, Benesty et al. [8] introduced an innovative approach for the design and
implementation of CDMAs. This approach ignores the traditional differential structure of DMAs
and develops the fundamental theory and algorithms for broadband frequency-domain CDMAs
up to any order from a signal processing perspective. The proposed solution allows perfect
steering in the directions of the array sensors. Several examples are presented, showing the
equivalence between the traditional design of DMAs and the proposed design.

In this work, we present a framework for a broadband time-domain implementation of first-order
CDMAs which enables perfect steering to any azimuthal direction. First, the array input signal
is manipulated and represented in a separable form as a product between a desired signal de-
pendent term and a second term which depends only on the array geometry. Then we derive
a closed-form solution for time-domain first-order CDMAs. Due to the DMA assumption, the
derived solution is very simple with respect to other methods usually employed in the design
of general arrays where some constraints that ensure the frequency invariance should be im-
posed. We also establish the time-domain equivalent of widely used quality measures like the
beampattern, the white noise gain (WNG), and the directivity factor (DF). Finally, we evaluate
the performance of the time-domain DMAs and compare it with that of the frequency-domain
implementation recently proposed by Benesty et al. [3].

The paper is organized as follows. In Section 2, we formulate the signal model. In Section 3,
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we define a general broadband beamformer and in Section 4, we develop a closed-form solu-
tion for the first-order DMA filters. In Section 5, we define some useful performance measures
to evaluate time-domain DMAs. In Section 6, we present a design example of the first-order
CDMAs along with some simulation results confirming the validity of the developed time-domain
solution.

2 Signal model
We consider a broadband source signal, s(n), in the far-field, where n is the discrete-time index,
that propagates in an anechoic acoustic environment at the speed of sound, i.e., c = 340 m/s,
and impinges on a uniform circular array (UCA) of radius r, consisting of M omnidirectional
microphones, where the distance between two successive sensors is

δ = 2r sin
(

π

M

)
≈ 2πr

M
. (1)

The direction of the source signal to the array is parameterized by the angle θ , where θ = 0◦

corresponds to the endfire direction. We assume that the center of the UCA coincides with
the origin of the Cartesian coordinate system and serves also as the virtual reference sensor.
Assuming a far-field propagation, the time delay between the mth microphone and the center
of the array is

τm(θ) =
r
c

cos(θ −ψm), m = 1,2, ...,M, (2)

where

ψm =
2π(m−1)

M
(3)

is the angular position of the mth array element. In this scenario, the signal measured at the
mth microphone is given by

ym(n) = s [n−∆− fsτm(θ)]+ vm(n), (4)

where ∆ is the propagation time from the position of the source s(n) to the center of the array,
fs is the sampling frequency, and vm(n) is the noise picked up by the mth sensor. For the
general case where fsτm(θ) is not an integer, we may apply the Shannon’s sampling theorem
[10], which implies that

ym(n) =
∞

∑
l=−∞

s [n−∆− l]sinc [l− fsτm(θ)]+ vm(n)

≈
P+µLh

∑
l=−P

s [n−∆− l]sinc [l− fsτm(θ)]+ vm(n), (5)

where P� fsτm(θ), µ is a fraction, and Lh is the length of the FIR filter to be defined later.
Hence, we can also express (4) as

ym(n) = gT
m(θ)s(n−∆)+ vm(n), (6)
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where the superscript T is the transpose operator, the vector s(n−∆) contains L = 2P+ µLh
successive samples of the signal s(n−∆), and gm(θ) is a vector containing the coefficients
of the interpolation kernel function. By considering Lh successive time samples of the mth
microphone signal, (6) becomes a vector of length Lh:

ym(n) = Gm(θ)s(n−∆)+vm(n), (7)

where Gm(θ) is a Sylvester matrix of size Lh×L created from the vector gT
m(θ), and vm(n) is a

vector of length Lh containing the noise samples.

Now, by concatenating the observations from the M microphones, we get a vector of length
MLh:

y(n) =
[

yT
1 (n) yT

2 (n) · · · yT
M(n)

]T
= G(θ)s(n−∆)+v(n), (8)

where

G(θ) =


G1(θ)
G2(θ)

...
GM(θ)

 (9)

is a matrix of size MLh×L and

v(n) =
[

vT
1 (n) vT

2 (n) · · · vT
M(n)

]T (10)

is a vector of length MLh.

Like in LDMAs, we also assume in CDMAs that δ is small relative to the wavelength. Yet,
in contrast to the linear case, herein, we allow the desired signal to arrive from all azimuthal
directions and not only from the endfire. We denote the desired signal’s direction as θd, so that
the observations are

y(t) = G(θd)s(t−∆)+v(t). (11)

Then, our objective is to design all kind of broadband CDMAs, where the main lobe is at the
angle θ = θd, with a real-valued spatiotemporal filter of length MLh:

h =
[

hT
1 hT

2 · · · hT
M
]T

, (12)

where hm, m = 1, . . . ,M are temporal filters of length Lh.

3 Broadband beamforming
By applying the filter h to the observation vector y(n), we obtain the output of the broadband
beamformer:

z(n) =
M

∑
m=1

hT
mym(n) = hT y(n) = xfd(n)+ vrn(n), (13)
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where

xfd(n) =
M

∑
m=1

hT
mGm(θd)sL (n−∆)

= hT G(θd)s(n−∆) (14)

is the filtered desired signal and

vrn(n) =
M

∑
m=1

hT
mvm(n) = hT v(n) (15)

is the residual noise. We see from (14) that the distortionless constraint is

hT G(θd) = iT , (16)

where i is a column vector of length L with all its elements equal to zero except for one element.
The decision which element will be non-zero can be made empirically. This constraint is always
required in the design of CDMAs.

4 Design of First-Order CDMAs
In order to design first-order CDMAs we need at least M ≥ 3 (the case of M = 2 coincides
with the linear case already discussed in [3], [4]). Thus, for first-order CDMAs, we have three
constraints to fulfill; the distortionless one given in (16) and two more symmetric constraints
with nulls in the directions θd +θ1 and θd−θ1 where θ1 ∈

[
π

2 ,π
]
, i.e.,

hT G(θd +θ1) = 0T (17)

and

hT G(θd−θ1) = 0T , (18)

where 0 is a zero vector of length L. Combining all these constraints together, we get the
following linear system: GT

1 (θd) GT
2 (θd) · · · GT

M(θd)
GT

1 (θd +θ1) GT
2 (θd +θ1) · · · GT

M(θd +θ1)
GT

1 (θd−θ1) GT
2 (θd−θ1) · · · GT

M(θd−θ1)

h = i1, (19)

or, equivalently,

C1,M(θ)h = i1, (20)

where C1,M(θ) is a matrix of size 3L×MLh and

i1 ,

 i
0
0

 (21)

5



is a vector of length 3L. We can solve (20) using the pseudo-inverse of C1,M(θ):

h = P†
C1,M

(θ)i1, (22)

where

P†
C1,M

(θ) =
[
CT

1,M(θ)C1,M(θ)+λ I
]−1 CT

1,M(θ) (23)

is the pseudo-inverse of the matrix C1,M(θ) and the scalar λ is a regularization parameter.
Later, in simulations we show that this simple solution yields a frequency-invariant beampattern
although no specific constraints were imposed. This is due to the fact that we deal with the
DMA model which inherently provides the frequency-invariance property.

5 Performance Measures
Herein, we present some useful quality measures which we use in simulations in order to
assess the performance. Assuming microphone 1 to be the reference sensor, the gain in
signal-to-noise ratio (SNR) is

G (h) =
oSNR(h)

iSNR
=

hT G(θd)GT (θd)h
hT

Γvh
, (24)

where Γv =
Rv
σ2

v1
is the pseudo-correlation matrix of v(t).

The WNG is obtained by taking Γv = IMLh , where IMLh is the MLh×MLh identity matrix, i.e.,

W (h) =
hT G(θd)GT (θd)h

hHh
. (25)

We can also define the broadband beampattern or broadband directivity pattern as

|B (h,θ)|2 = hT G(θ)GT (θ)h. (26)

Finally, we define the DF of the array which is the gain in SNR for the case of spherical diffuse
noise using the direct definition of the DF (see for example [11, ch.2]):

D (h)≈ 2∫
π+θd
θd

|B (h,θ)|2 sinθdθ
, (27)

where B (h,θ) is defined in (26). The last definition is a good approximation for small orders
of DMAs.

6 A design example
In this section, we study the design of a first-order hypercardioid circular differential microphone
array (CDMA) directivity pattern. For the case of CDMA, the hypercardioid has a distortionless
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response in the direction θd and two more null constraints: the first one is in the direction
θd + θHc and the second is in the direction θd− θHc, where θHc =

4π

3 . We choose a sensor
spacing of δ = 1cm and examine the case of M = 3 sensors. We choose the filter length to be
Lh = 12 taps and the sampling frequency to be fs = 8000 Hz. We choose P = 6 taps, µ = 0.2,
and get L = 18 taps. The regularization parameter is set to be λ = 10−4.

Figure 1 shows the broadband beampattern of the time-domain implementation (26) of a first
order hypercardioid for different values of the angle θd. These patterns are similar to those
obtained with the frequency-domain implementation in [8, ch.3]. One can see that the directivity
pattern is identical for each value of the presented steering direction, θd. Note also that for the
case of θd = 120◦, the vectors hi, i = 1, ...,M are permutations of the same vectors for the case
of θd = 0◦. This is because both the angles θd = 0◦ and θd = 120◦ are the directions of two
out of the three array sensors. Therefore, we can exploit this symmetry for scenarios in which
only the steering angles of the M sensors’ directions are required and calculate the vectors
hi, i = 1, ...,M only for the endfire direction, then, just permute between filters. This is not the
case for the third case of θd = 200◦ which is not one of the sensors’ directions.

(a) (b) (c)

Figure 1: Beampatterns for the time-domain first order hypercardioid CDMA with M = 3 sensors
in different steering angles: (a) θd = 0◦, (b) θd = 120◦, and (c) θd = 200◦.

We also plot in Fig. 2 the time-domain WNG and the time-domain DF as a function of the
number of sensors, M, for the case of a first-order CDMA hypercardioid. One can see that the
WNG is increased with the number of sensors while the DF is slightly above the value of 5 dB
and does not vary at all.

7 Conclusions
We have presented a framework for time-domain implementation of first-order CDMAs, which
is desirable in some applications such as real-time communications. Due to the DMA as-
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Figure 2: WNG (circles) and DF (stars) vs. M, for the case of a first-order hypercardioid.

sumption, we get a very simple solution that provides a frequency-invariant beampattern. The
quality measures widely used for assessment of beamformers were also defined in the time
domain. Simulation results of the proposed implementation demonstrate that it is equivalent to
the frequency-domain implementation, thus providing a large amount of flexibility in the design
considerations of practical systems employing CDMAs.
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