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ABSTRACT

In this paper, we present a remote speech-measurement system,
which utilizes an auxiliary laser Doppler vibrometer (LDV) sensor.
When focusing on the larynx, this sensor captures useful speech in-
formation at low-frequency regions (up to 1.5—2 kHz), and is shown
to be immune to acoustical disturbances. For improved speech en-
hancement, we propose a new algorithm for efficiently combining
the signals from the LDV-based sensor and a standard acoustic sen-
sor. The algorithm includes a pre-filtering process, to suppress im-
pulsive noises that severely degrade the LDV-measured speech, and
a soft-decision voice activity detector (VAD) in the time-frequency
domain. Experimental results demonstrate the performance of the
proposed system in transient noise environments.

Index Terms— speech enhancement, nonacoustic sen-
sors, laser vibrometry.

1. INTRODUCTION

Achieving high speech intelligibility in noisy environments is
one of the most challenging and important problems for ex-
isting speech-enhancement and speech-recognition systems
[1,2]. Under low signal-to-noise ratio (SNR) conditions
and highly non-stationary noise environments, the perceived
speech quality is severely degraded, and existing voice com-
munication systems fail to properly suppress interferences in
such conditions.

Recently, several approaches have been proposed that
make use of auxiliary nonacoustic sensors, such as bone-
and throat- microphones (e.g., [3—7]). Such sensors typically
measure vibrations of the speech-production anatomy (e.g.,
vocal-fold vibrations) and are relatively immune to acoustic
interferences [3]. The speech information captured by these
sensors can then be combined with the acoustic noisy signal to
further improve speech intelligibility. In [4], air- and throat-
microphones are combined by training features mapping from
both sensors to improve noise robustness of automatic speech
recognition (ASR) systems. In [5], a voice activity detector
(VAD) is constructed from a throat sensor to improve speech
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recognition accuracy. A multisensory technique is demon-
strated in [6] for improved speech enhancement, and a general
electromagnetic motion sensor (GEMYS) is utilized in [7] for
speech coding. A major drawback of most existing sensors is
the requirement for a physical contact between the sensor and
the speaker. Contact-based auxiliary sensors must be strapped
or taped on facial locations to measure speech vibrations.

In this paper, we present an alternative approach that en-
ables a remote measurement of speech, using an auxiliary
laser Doppler vibrometer (LDV) sensor. An LDV is a non-
contact measurement device which is capable of measuring
vibration frequencies of moving targets [8]. When focus-
ing on the larynx, this sensor captures useful speech infor-
mation at low-frequency regions (up to 1.5 — 2 kHz), and is
shown to be isolated from acoustical disturbances. We pro-
pose a speech enhancement scheme for efficiently combining
the LDV signal with an acoustic signal degraded by highly
non-stationary noise. Since the LDV-measured signal is char-
acterized by impulse-like noise (due to random constructive
and destructive interferences of backscattering waves), we
include a pre-filtering process to efficiently suppress impul-
sive noises. A soft-decision VAD in the time-frequency do-
main is derived and incorporated into the optimally-modified
log-spectral amplitude (OM-LSA) algorithm [1] to further en-
hance its performance under highly non-stationary noise con-
ditions. Experimental results demonstrate both noise robust-
ness and improved speech intelligibility compared to using
the acoustic sensor alone. It is worthwhile noting that the en-
hanced signal can be used as an input to existing ASR systems
to improve recognition accuracies. A detailed ASR perfor-
mance evaluation, however, is currently under research.

The paper is organized as follows. In Section 2, we de-
scribe the basic principles of LDV in measuring acoustic
speech signals. In Section 3, we formulate the problem of
speech enhancement using auxiliary LDV measurements. In
Section 4, we propose a new enhancement approach using an
LDV-based VAD in the time-frequency domain, and finally in
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Fig. 1. Block diagram of a laser Doppler vibrometer (LDV).

Section 5, we present experimental results that demonstrate
the effectiveness of the proposed approach.

2. ACOUSTIC SPEECH MEASUREMENTS WITH
LDV

In this section, we briefly review the basic principles of LDV
in measuring acoustic speech signals and describe our mea-
surement setup.

2.1. Principles of LDV

An LDV is a non-contact measurement device which mea-
sures, based on the principle of interferometry, the Doppler
frequency shift of a laser beam reflected from a moving (vi-
brating) target. In our case, the LDV sensor is directed to
a speaker’s throat and measures its vibration velocity (e.g.,
vocal-fold vibrations), as illustrated in Fig. 1. A coherent
beam from the laser, with frequency f, is divided into a refer-
ence beam and an object beam using a beam-splitter BS1. The
object beam, which passes through a beam-splitter BS2, is di-
rected to the vibrated object (speaker’s throat) by an optical
lens, and backscattered to a beam-splitter BS3 with a Doppler
shift f;. This frequency shift is related to the instantaneous
throat-vibrational velocity v(t) via f4(t) = 2v(t) cos(a)/A,
where « is the angle between the object beam and the veloc-
ity vector, and A is the laser wavelength. Simultaneously, the
reference beam passes through a Bragg cell, which produces
a frequency shift of f;. The resulting beam-shifted beams
(object and reference) are mixed together at the beam-splitter
BS3 to generate a signal with frequency f;, + fg, which is
then converted to a voltage signal by a photo-detector (e.g.,
a photodiode). Clearly, the resulting signal is a frequency-
modulated (FM) signal with f, and fy being its carrier and
modulated frequencies, respectively. For a vibration fre-
quency f, with amplitude A,, for instance, the LDV-output
signal after an FM-demodulator is

2(t) = fo + [24, cos(a)/A] - cos(27 fot) . (D)
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Fig. 2. Experimental setup.

2.2. Measurement Setup

The experiments presented in this paper are conducted by em-
ploying the VibroMet™ 500V LDV from MetroLaser [9] that
consists of a remote laser-sensor head and an electronic con-
troller (see Fig. 2). The device operates at 780 nm wave-
length and may detect vibration frequencies from DC to over
40 kHz; thus being suitable for measuring voice vibrations.
Its operational working distance ranges from 1 cm to 5 m.
Note that the MetroLaser LDV is presented here only to
demonstrate a remote speech measurement with laser-based
sensors. Its practical use in real voice communication systems
is somehow limited due to its relatively heavy equipment. A
new practical laser-based sensor, which is small and does not
require heavy equipment, is currently under development.

In our experimental setup, a speaker is located at a dis-
tance of 75 cm from the LDV and 1 m from the acoustic sen-
sor. Figure 3 shows the spectrogram and waveform of the
speech signal, measured by the LDV with a sampling rate of
8 kHz, in a relatively noise-free environment. It should be
noted, though, that the LDV speech measurements are rela-
tively immune to acoustic interferences and insensitive to fa-
cial movements (i.e., vertical or horizontal head movements).
Nonetheless, when a speaker moves outside the laser-beam
direction, the beam should be re-focused on the speaker’s
throat. Figure 3 shows that when focusing on the larynx, the
LDV sensor captures useful speech information only at low-
frequency regions (up to 1.5 kHz). In addition, we observe
that the measured laser signal is degraded by an interference,
characterized by random impulses. This impulse-like noise is
generally referred to as speckle noise [10] and may severely
limit the applicability of LDV-based measurement devices.
Speckle noise arises from random constructive and destruc-
tive interferences of waves that backscatter from a relatively
rough surface. An algorithm for attenuating this noise is pre-
sented in Section 4.

3. PROBLEM FORMULATION

In this section, we formulate the problem of speech enhance-
ment, assuming an auxiliary LDV measurement of the speech
signal is available. Let 2:(n) and d(n) denote speech and un-
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Fig. 3. Spectogram and waveform of a speech signal mea-
sured by LDV.

correlated additive noise signals, respectively, and let y(n) =
x(n) + d(n) be the observed signal in the acoustic sensor.
In the STFT domain, we have Yy, = Xy + Dy, where
¢ = 0,1,... is the frame index and £k = 0,1,...,N — 1
is the frequency-bin index. We use overlapping frames of IV
samples with a framing-step of M samples. Let HS* and H{*
indicate, respectively, speech absence and presence hypothe-
ses in the time-frequency bin (¢, k), i.c.,

HE* - Yo, = Dy,

H{* . Yo = Xor, + Dy, - (2)
An estimator for the clean speech STFT signal Xy, is tradi-
tionally obtained by applying a gain function to each time-
frequency bin, i.e., Xy = GoxYer,. The OM-LSA estimator
[1] minimizes the log-spectral amplitude under signal pres-
ence uncertainty, resulting in

1—pek

min ’

G = {Guyu}’™ G 3)
where G, .0 is a conditional gain function given H{¥,
Ghmin < 1 is a constant attenuation factor, and pyy, is the con-
ditional speech presence probability. Denoting by &z, and gy,
the a priori and a posteriori SNRs, respectively, we get [1]

Pt =1+ (L4 &) e qon/ (1 — qur) 4)

where qo, = P (HEF

L

) is the a priori probability for speech
absence, and vy Yek€er/(1 + ~ver). In highly non-
stationary noise environments, it is difficult to determine gy,
and therefore the estimator (3) does not yield satisfactory re-
sults. To further attenuate noise transients, while not compro-
mising for higher speech-components degradation, a reliable
estimator for the speech presence probability is required.
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4. SPEECH ENHANCEMENT ALGORITHM

In this section, we exploit the immunity of the LDV sensor to
acoustic disturbances in order to derive a reliable VAD in the
time-frequency domain. This VAD is then used as an estima-
tor for the speech presence probability and incorporated into
the OM-LSA algorithm to enhance its performance in highly
non-stationary noise environments. The LDV signal is first
pre-filtered with a high-pass filter (at approximately 50 Hz),
in order to reduce its relatively large DC energy. The resulting
filtered signal is denoted by z(n).

4.1. Speckle-Noise Suppression

Motivated by the impulsive nature of speckle noise, we pro-
pose a decision rule based on the signal kurtosis. The use
of kurtosis for detecting speckle noise was first introduced
in [10] for LDV-based mechanical fault diagnostic, and is ex-
tended here to speech signals.

The signal z(n) is divided into overlapping frames by the
application of a length-N window function h(n): z¢(n) =
z(n + M)h(n) for 0 < n < N — 1. Let K,
E {[zz(n) - E{zz(n)}f} /o2, denote the kurtosis on the (th

frame, where o2, is its variance. The larger the amount of
speckle noise in a given frame, the higher is the kurtosis on
that frame. The kurtosis is smoothed in time using a first-
order recursive averaging with a time constant ag:

’Cav,l = aslcav,é—l + (1 - OéS)ICg . %)
Moreover, in order to avoid false speckle-noise detection at
the beginnings and endings of voiced phonemes, we consider
the kurtosis of {zg(n)}g;OMfl and {zg(n)}i:];\l/[ (denoted by
Ko.e and K., respectively) and propose the following rough
decision about speckle-noise presence:

=

where Ky is a kurtosis threshold. At a beginning (or ending)
of a phoneme, the value of either Ky, or K., decreases; thus
reducing the probability of falsely detecting speckle noise in
that frame. The output of the speckle-noise detector is then
defined by

15
0,

if/Cav’g, ’Cb,b and Ke,@ > Ko
otherwise

(6)

El

(7

where Gy = Ggmin < 1 for Iy = 1 (speckle-noise is present),
and Gy = 1 otherwise. Figure 4 shows the resulting signal
achieved by applying the proposed speckle-reduction algo-
rithm to the measured signal of Fig. 3. Clearly, the speech
quality is improved and the speckle noise is substantially sup-
pressed.

we(n) = Gyze(n),
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Fig. 4. Spectogram and waveform of an enhanced LDV
speech signal achieved by applying the algorithm presented
in Section 4.1 to the signal of Fig. 3.

4.2. LDV-Based Time-Frequency VAD

A soft-decision VAD is derived in the time-frequency do-
main based on the signal wy(n) and the minima-controlled-
estimation algorithm [2]. Specifically, we define Sy to be a
smoothed-version of the power spectrum |Wpy|, where Wy,
is the Fourier transform of wy(n). The smoothing is per-
formed in both time and frequency domains. Let S denote
the minimum value of Sy, within a finite window of length
D, and let yp 2 W |2 / (BminSf]’fn), where B, represents
the noise-estimate bias [2]. Then, we propose the following
soft-decision VAD:

1, if Yo, > 7
pa=q 0 ifwm<io @
m%ﬁfgggg , otherwise.
Note that the ratio between the thresholds 7 and 4, should be
sufficiently large, since the noise level in wy(n) may be sig-
nificantly low [see (7)]. Finally, to retain weak speech com-
ponents, pj, is smoothed in time, yielding

Dok = pPo—1k + (1 — ap)pys, - )

4.3. Spectral Gain Modification

In the following, we incorporate (9) into the OM-LSA spec-
tral gain (3). Initially, the likelihood of speech in a given
frame is defined by

Py = mean {pe|k1 < k < ko}, (10)
where the values of &y and ko are imposed by the frequency
range of the LDV signal that contains useful speech informa-
tion (see Section 2.2). The modification of the OM-LSA gain
is then determined by comparing P, to a given threshold P,
as follows.

Amplitude

Additive noise
Clean acoustic signal
'+ LDV-based VAD

0 0.5 1 1.5 2 25 3 3.5 4 4.5

Fig. 5. Waveforms of the clean and noise signals (4 dB seg-
mental SNR). The frame-based VAD decision (10) is depicted
by a dotted line.

For any frame /¢ that satisfies P, > Py, speech is as-
sumed present. Accordingly, an estimate for py; from (4)
is achieved by substituting the smoothed VAD decision pyy
from (9) for gy, the a priori probability, where k1 < k < ko.
To further enhance the time-frequency bins that are proba-
ble to contain speech, we set pg, = 1 whenever pg, > pp
and set pyr, = O for pgr, < p;, where py and p; are pre-
defined parameters. On the other hand, for frames where
P; < P, speech is assumed absent, and pyj, is set to O for
0 < k < N — 1. We further attenuate high-energy transient
components to the level of the stationary background noise by

updating the gain floor in (3) to Goin = Gmin\/j\s)gk/sy}gk,
where 5\5“ is the stationary noise-spectrum estimate and
Sy = WSy -1k + (1 — ) |Yg;€|2 is the smoothed noisy
spectrum (0 < p < 1).

5. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the pro-
posed approach in enhancing speech signals in highly non-
stationary noise environments. The experimental setup is de-
scribed in Section 2.2 (see Fig. 2). The desired speaker is
degraded by an additional undesired speaker and a station-
ary background noise, and measured simultaneously by the
LDV and the acoustic sensor with a sampling rate of 8 kHz.
For the STFT, we use a Hamming analysis window of 32 ms
length with 75% overlap between consecutive windows. For
all the considered algorithms, the background-noise spectrum
is estimated by using the improved minima-controlled recur-
sive averaging (IMCRA) algorithm [2]. The values of the
parameters used in the implementation of the proposed al-
gorithm are: as; = 0.9, Ky = 9, Gemin = 0.01 (Sec-
tion 4.1); 7 = 1.5 dB,7y; = 40 dB, o, = 0.85 (Section 4.2);
Pain = 0.1, pp, = 0.7, p, = 0.1, and » = 0.8 (Section 4.3).
The OMLSA gain floor is set to G, = 0.1.

Figure 5 shows the waveforms of the clean and additive
noise signals as well as the frame-based VAD decision de-
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Fig. 6. Speech Spectrograms and waveforms. (a) Clean speech signal measured by the acoustic sensor. (b) Noisy signal
(additional speaker and stationary noise; 4 dB segmental SNR). (c) Speech enhanced using the OMLSA algorithm. (d) Speech

enhanced using the proposed algorithm.

fined in (10). Clearly, the LDV-based VAD accurately tracks
the clean acoustic speech even under non-stationary noise
conditions. The corresponding spectrograms and waveforms
are shown in Fig. 6, including the speech-signal estimate
as obtained by applying the OMLSA to the acoustic sensor
[Fig. 6(c)] and the proposed approach [Fig. 6(d)]. The signal
measured by the LDV and its enhanced version are depicted,
respectively, in Figs. 3 and 4. Table 1 summarizes three objec-
tive quality measures: segmental SNR (segSNR), log-spectral
distortion (LSD) and noise reduction (NR). We observe that
when the desired speaker is inactive, a substantial suppres-
sion of the non-stationary interference is achieved by the pro-
posed approach (—31 dB noise reduction); whereas without
the LDV sensor, the OMLSA algorithm expectedly fails to
eliminate the undesired speaker. Moreover, during desired-
speech frames, an improvement in speech quality is attained
by the proposed approach, compared to applying the standard
OMLSA algorithm to the acoustic sensor. Specifically, an im-
provement of 1.3 dB in SegSNR and 4 dB in LSD is evident.

Table 1. Segmental SNR, Log-Spectral Distortion and Noise
Reduction Obtained Using the Acoustic Sensor Only (With-
out LDV) and the Proposed Approach (With LDV).

Method \ SegSNR [dB] LSD [dB] NR [dB]
Noisy speech 4.01 9.2 0
Without LDV 6.35 7.01 -8.03

With LDV 7.64 3.01 -31.2

6. CONCLUSIONS

We have presented a remote speech-measurement system
that utilizes an auxiliary LDV sensor, and proposed a
speech-enhancement algorithm based on these measure-
ments. Speckle noise was successfully attenuated from the
LDV-measured signal using a kurtosis-based decision rule. A
soft-decision VAD was derived in the time-frequency domain
and the gain function of the OM-LSA algorithm was appro-
priately modified. The effectiveness of the proposed approach
in suppressing highly non-stationary noise components was
demonstrated.

An effort is currently underway to develop a small laser-
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based sensor, which does not require heavy equipment and
may be more suitable for practical use in real voice commu-
nication systems. Future research will concentrate on evalu-
ating a detailed ASR performance using the proposed speech-
enhancement approach.
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