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ABSTRACT

In this paper, we introduce a Minima Controlled Recursive
Averaging (MCRA) noise estimation approach for robust
speech enhancement. The noise spectrum is estimated by
recursively averaging past spectral power values, using a
smoothing parameter that is adjusted by the signal pres-
ence probability in subbands. We show that presence of
speech in a given frame of a subband can be determined
by the ratio between the local energy of the noisy speech
and its minimum within a specified time window. The noise
estimate is unbiased, computationally efficient, robust with
respect to the input signal-to-noise ratio and type of un-
derlying additive noise, and characterized by the ability to
quickly follow abrupt changes in the noise spectrum. Incor-
porated in the Optimally-Modified Log-Spectral Amplitude
estimator, excellent noise suppression is achieved, while re-
taining weak speech components and avoiding the musical
residual noise phenomena.

1. INTRODUCTION

A crucial component of a practicable speech enhancement
system is the estimation of the noise power spectrum. The
noise can be clearly estimated based on histograms in the
power spectral domain [10, 6, 12]. However, such methods
are computationally expensive. An alternative commonly
used approach is to average the noisy signal over sections
which do not contain speech. A soft-decision speech pause
detection is either implemented on a frame-by-frame ba-
sis [7] or estimated independently for individual subbands
using a posteriori signal-to-noise ratio (SNR) [8, 6]. Unfor-
tunately, the detection reliability severely deteriorates for
weak speech components and low input SNR. Additionally,
the amount of presumable non-speech sections in the signal
may not be sufficient, which restricts the tracking capability
of the noise estimator in case of varying noise spectrum.
Martin [9] has proposed an algorithm for noise estima-
tion based on minimum statistics. The noise estimate is
obtained as the minima values of a smoothed power esti-
mate of the noisy signal, multiplied by a factor that com-
pensates the bias. However, this noise estimate is sensitive
to outliers [12], and generally biased. The factor merely
compensates the bias for stationary white Gaussian noise
and ¢ndependent power estimates, which i1s obviously not
applicable since successive values are correlated. Moreover,
this method occasionally attenuates low energy phonemes
[9]. In [4], a computationally more efficient minimum track-
ing scheme is presented. [ts main drawback is the very slow
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update rate of the noise estimate in case of a sudden rise in
noise energy level.

In this paper, we introduce a Minima Controlled Re-
cursive Averaging (MCRA) noise estimation approach for
robust speech enhancement. The noise spectrum is esti-
mated by recursively averaging past spectral power values,
using a smoothing parameter that is adjusted by the signal
presence probability in subbands. We show that presence of
speech in a given frame of a subband can be determined by
the ratio between the local energy of the noisy speech and
its minimum within a specified time window. The ratio is
compared to a certain threshold value, where a smaller ratio
indicates absence of speech. Subsequently, the speech/non-
speech segmentation is “softened” via a temporal smooth-
ing, which exploits the strong correlation of speech presence
in neighboring frames. The resultant noise estimate is un-
biased, computationally efficient, robust with respect to the
input SNR and type of underlying additive noise, and char-
acterized by the ability to quickly follow abrupt changes in
the noise spectrum.

The MCRA noise estimate is incorporated in a speech
enhancement system [1, 2] and compared to alternative con-
ventional noise estimates. Objective and subjective evalua-
tion show that the proposed approach is superior under all
tested environmental conditions.

2. NOISE SPECTRUM ESTIMATION

Let #(n) and d(n) denote speech and uncorrelated additive
noise signals, respectively, where n is a discrete-time index.
The observed signal y(n), given by y(n) = z(n) + d(n),
is divided into overlapping frames by the application of a
window function and analyzed using the short-time Fourier
transform (STFT). Specifically,
N-1
Yk €)= y(n+ (M)h(n) e ¥ (1)
n=0
where k is the frequency bin index, £ is the time frame index,
h is an analysis window of size N (e.g., Hanning window),
and M 1s the sampling step in time. Given two hypotheses,
Ho(k,£) and Hi(k,{), which indicate respectively speech
absence and presence in the £th frame of the kth subband,
we have
Ho(k,0) : Y(k,0) = D(k, )
Hi(k,0) : Y(k,0) = X(k,£)+ D(k,{) (2)

where X (k,¢) and D(k, () represent the STFT of the clean
and mnoise signals, respectively. Let Aa(k, £) = E[|D(k, £)]?]

© IEEE 2001



denote the variance of the noise in the kth subband. Then a
common technique to obtain its estimate is to apply a tem-
poral recursive smoothing to the noisy measurement during
periods of speech absence. In particular,

Hy(k, 0) 0 Ma(k, €+ 1) = agha(k, £) + (1 — aq)|Y (k, 0)]
H{(k, £) : Xa(k, £+ 1) = Xa(k, £) (3)

where ag (0 < ag < 1) is a smoothing parameter, and H}
and H{ designate hypothetical speech absence and presence,
respectively. Here, we make a distinction between the hy-
potheses in Egs. (2), used for estimating the clean speech,
and the hypotheses in Egs. (3), which control the adapta-
tion of the noise spectrum. Clearly, deciding speech is ab-
sent (Ho) when speech is present (H1) is more destructive
when estimating the signal than when estimating the noise.
Hence, different decision rules are employed, and generally
we tend to decide H; with a higher confidence than Hi, i.e.
P(HL|Y) > P(HI]Y).

Let p'(k, ) = P(H{(k,0)|Y (k,£)) denote the conditional
signal presence probability. Then (3) implies

Xa(k, £+ 1) = Xa(k, O)p’ (k, £)
+[adha(k, 0) + (1 — @) [Y (k, O] (1= p'(k, 0))
k

= aa(k, OXa(k, £) + [1 — aa(k, O)]|Y (k, 0)] (4)

where da(k,0) 2 ag+ (1 —aa)p' (k. 0) (5)
is a time-varying smoothing parameter. Accordingly, the
noise spectrum can be estimated by averaging past spectral
power values, using a smoothing parameter that is adjusted
by the signal presence probability.

Tracking the conditional signal presence probability is
based on the local statistics in the time-frequency plane of
the noisy speech energy. Accordingly, speech absence in a
given frame of a subband is determined by the ratio between
the local energy of the noisy speech and its minimum within
a specified time window. The ratio is compared to a certain
threshold value, where a smaller ratio indicates absence of
speech. To reduce fluctuations between speech and non-
speech segments, a recursive temporal averaging is carried
out, thereby taking into account the strong correlation of
speech presence in neighboring frames.

The local energy of the noisy speech is obtained by
smoothing the magnitude squared of its STFT in time and
frequency. In frequency, we use a window function b whose
length 1s 2w + 1:

w
Sy, €)= b(i) [Y (k=10 .

t=—w

(6)

In time, the smoothing is performed by a first order recur-
sive averaging, given by

S(k,£) = aS(k,—1)+ (1 —a.)Ss(k, £), (7)
where a: (0 < a, < 1) is a parameter. The minimum
of the local energy, Smin(k,{), is searched using a simpli-
fied form of the procedure proposed in [9]. First, the min-
imum and a temporary variable Simp(k,£) are initialized

by Smin(k,0) = S(k,0) and Simp(k,0) = S(k,0). Then, a
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Fig. 1. Hypothetical probability density functions,

p(Sr|Ho) and p(Sr|Hiy), for: (a) White Gaussian noise;

(b) Car interior noise.

samplewise comparison of the local energy and the mini-
mum value of the previous frame yields the minimum value
for the current frame:

Senin (k, £) = min {Smin (k, £ — 1), S(k, £)}
Stmp(k, €) = min {Semp(k, £ — 1), S(k, £)} .

(®)

(9)

Whenever L frames have been read, ¢.e. £ is divisible by L,

the temporary variable is employed and initialized by
Smin(k, £) = min {Semp(k, € — 1), S(k, )}
Semp(k, £) = S(k, £),

(10)
(11)

and the search for the minimum continues with Egs. (8) and
(9). The parameter L determines the resolution of the local
minima search. The local minimum is based on a window
of at least L frames, but not more than 21 frames. The
lower limit constraint should guarantee that the local min-
imum is associated with the noise, and not biased upwards
during “continuous” speech. The upper limit, on the other
hand, should control the bias downwards when noise level
increases. According to [9] and our own experiments with
different speakers and environmental conditions, this can be
satisfied with window lengths of approximately 0.5s5—1.5s.

Let Sy (k, ) = S(k,£)/Smin(k, ) denote the ratio be-
tween the local energy of the noisy speech and its derived
minimum. A Bayes minimum-cost decision rule is given by

p(Sr|H1) Clop(Ho)
p(ST|HO) ;{) 001P(H1) (12)

where P(Hp) and P(H,) are the a priori probabilities for
speech absence and presence, respectively, and ¢;; 1s the cost
for deciding ] when H;. Fig. 1 shows representative exam-
ples of conditional probability density functions, p(S,|Ho)
and p(Sr|H,), obtained experimentally for white Gaussian
noise and car interior noise, at -5dB segmental SNR. Since
the likelihood ratio p(S-|H1)/p(Sr|Ho) is a monotonic func-
tion, the decision rule of (12) can be expressed as

Hy
Se(k,€) 2z 4. (13)
We propose the following estimator for p'(k, 0):
p'(k, €) = app'(k, £ — 1) + (1 — ap)I(k, £) (14)

where a; (0 < ap < 1) is a smoothing parameter, and
I(k, ) denotes an indicator function for the result in (13),



=
N

B e
o N
T
L

SegSNR improvement [dB]
N A O ©

|
o

Input SegSNR [dB]

(a)

=
N

B e
[SERN)
T T
L L

SegSNR improvement [dB]
N A O ©

|
o

Input SegSNR [dB]

(©)

=
N

B e
o N
T
L

SegSNR improvement [dB]
N A O ©

|
o

Input SegSNR [dB]

(b)

=
N

B e
[SERN)
T T
L L

SegSNR improvement [dB]
N A O

|
o

Input SegSNR [dB]

(d)

Fig. 2. Average Segmental SNR improvement for various noise types and levels: (a) White Gaussian noise; (b) Car interior
noise; (c) F16 cockpit noise; (d) Speech babble noise. The noise spectrum is estimated by the Minimum Statistics method
(dashed), Weighted Average (dashdot) and the MCRA approach (solid). A theoretical limit is obtained by calculating the

noise spectrum from the noise itself (dotted).

ie. I(k,¢) = 1if Sy(k,€) > and I(k,£) = 0 otherwise.
The merit of this estimate is threefold. First, § is not sensi-
tive to the type and intensity of environmental noise. Sec-
ondly, the probability of |Y|* » Mg is very small when
S, < 6. Hence, an increase in the estimated noise, conse-
quent upon falsely deciding H{ when H;, is not significant.
Thirdly, the strong correlation of speech presence in con-
secutive frames is utilized (via ay).

3. SPEECH ENHANCEMENT

To estimate the clean speech spectrum, we use the OM-LSA
estimator [1, 2]. This estimator minimizes the mean-square
error of the log-spectra under signal presence uncertainty.
Its superior performance was demonstrated [1, 2] even in
the most adverse noise conditions.

Let G(k,{) denote a real spectral gain function. Then
an estimate of the clean speech STFT is given by

Kk, ) = Gk, )Y (k, ). (15)

Applying the inverse STFT, with a synthesis window h that
is biorthogonal to the analysis window h [13], vields an es-
timate for the clean speech signal:

i)=Y Z_: X(k, O)h(n — (M) @ FE=OD — (16)

In practice, (16) is efficiently implemented using the
weighted overlap-add method [3].
The spectral gain function in (15) is given by [2]

Gk, 0) = {G, (k, O}*0 . @l 770

(17)

where p(k, {) = P(H(k, 0)|Y(k,£)) designates the condi-
tional signal presence probability, G &, (k, £) the conditional
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gain when speech is present, and Gmin a lower bound con-
straint for the gain when speech is absent. We have derived
[1, 2] an efficient estimator for p(k, £), based on the time-
frequency distribution of the a priori SNR and three param-
eters that quantify the speech likelihood in subbands. In
contrast to other methods, where high a posteriori SNR pro-
duces high spectral gain resulting in a random appearance
of tone-like noise (musical-noise phenomena) [8, 7, 4], the
OM-LSA estimator attenuates noise by identifying noise-
only regions and reduces the gain correspondingly to Gpin.
Yet, it avoids the attenuation of weak speech components
by letting p(k, £) increase to one in speech regions.

4. EXPERIMENTAL RESULTS AND
DISCUSSION

The MCRA noise estimate is compared to the Minimum
Statistics [9] and conventional Weighted Average [6] noise
estimates. The comparison is accomplished by evaluat-
ing their performance when incorporated in the Optimally-
Modified Log-Spectral Amplitude (OM-LSA) estimator [1, 2].
A theoretical limit, achievable by calculating the noise spec-
trum from the noise itself, is also considered.

Four different noise types, taken from Noisex92
database, are used in our evaluation: white Gaussian
noise, car noise, F16 cockpit noise, and speech babble
noise. Since noise signals have different impacts on different
speech signals, the speech enhancement performance is eval-
uated using six different utterances, taken from the TIMIT
database. Half of the utterances are from male speakers,
and half are from female speakers. The evaluation consists
of an objective segmental SNR measure, a subjective study
of speech spectrograms and informal listening tests.
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Fig. 3. Speech spectrograms. (a) Original clean speech signal: “Draw every outer line first, then fill in the interior.”;
(b) Noisy signal (additive F16 cockpit noise at a SegSNR = 0 dB); (c) Speech enhanced with the Minimum Statistics noise
estimate (SegSNR = 5.7 dB); (d) Speech enhanced with the MCRA noise estimate (SegSNR = 7.0 dB).

Fach speech signal is degraded by the various noise
types with segmental SNRs in the range [—5,10] dB. The
segmental SNR is defined by [11]

SV X (K, 0

AT

10
SegSNR = — Zlog
L] &~

where L represents the set of frames that contain speech.
The sampling frequency is 16 kHz. Accordingly, the fol-
lowing parameters have been chosen: frame size N = 512
(32 ms); time sampling step M = 128 (75% overlapping
windows); aq = 0.95; w = 1; a, = 0.8; L = 125 (1s min-
ima search Window); 6 =5, ap = 0.2; Gpin = —25 dB.
We used biorthogonal Hanning windows [13], and estimated
the a prior: SNR by the decision-directed approach with a
smoothing parameter set to 0.92 [3].

Fig. 2 shows the average segmental SNR improvement
obtained for various noise types and at various noise levels.
It can be readily seen that the MCRA approach consistently
achieves the best results under all noise conditions. A sub-
jective comparison was also conducted using speech spectro-
grams and validated by informal listening tests. Example
of speech spectrograms obtained with the MCRA noise es-
timate and the Minimum Statistics approach are shown in
Fig. 3. Particularly, compare low frequency formants hav-
ing low input SNR. The proposed method demonstrates ex-
cellent noise suppression, while retaining weak speech com-
ponents and avoiding the musical residual noise phenom-
ena.
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