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Abstract

In this thesis we address the challenge of single channel blind source separation (BSS),

mainly in the context of audio signals. The single channel BSS is an extreme situation of

an under-determined BSS problem in which only a single linear mixture of two instanta-

neous sources is given. Due to the under-determined nature of the BSS problem, a-prior

information about the sources must be incorporated in order to successfully separate them

from their mixture.

A variety of priors have been suggested within the framework of single-channel BSS,

among them are conceptual cues, statistical source modeling, codebook (CB) based source

representation, and various constraints such as sparsity, continuity and statistical indepen-

dence. Regardless of the selected prior and apart from special cases, it seems that current

solutions for single channel BSS still have not matured enough for real-life applications.

Throughout this research, we focus our interest on three types of CB-based separation

algorithms. The first type evolves from the Gaussian mixture model (GMM), the second

is derived by representing the audio signals with a dictionary of Auto regressive (AR)

processes and the third is based on the Non-negative Matrix Factorization (NMF) scheme.

These separation algorithms utilize a pre-defined CB for each source and apply it as a prior

in the mixture separation scheme. We further investigate the three CB-based separation

types and though each has evolved independently, we show that their separation schemes

are quite similar.

Following the investigation of the three CB-based separation algorithms, we define

and analyze two innovative CB-based separation algorithms. First, we introduce a gen-

eralization for the GMM/AR-based separation scheme. The GMM/AR-based separation

cost function treats each frequency bin (in the STFT domain) identically. Instead, our

generalized scheme introduces a frequency-dependent cost function. By using a vector

1



LIST OF TABLES 2

of frequency weights, we can differentiate between frequency bins according to their ob-

served energy or according to the characteristics of the source. Second, an additional

prior is introduced into the GMM/AR-based separation cost function. The original cost

function only requires that the combined Power Spectral Density (PSD) of the estimated

sources will be similar to the observed PSD, under the assumption that the sources are

statistically independent. Our addition also considers how ‘distant’ the two estimated

sources’ PSDs are.

Finally, we test the separation performances of the GMM/AR/NMF-based algorithms

and the two proposed separation algorithms in two real audio separation scenarios. We

conclude that the GMM-based source separation algorithm produced superior perfor-

mance in comparison with the AR/NMF-based separation algorithm. Specifically, the

best separation performance was obtained by using a generalization of the GMM model,

the Gaussian Scaled Mixture Model (GSMM). While simulating our two suggested sepa-

ration algorithms, we show that the frequency-dependent separation algorithm produces

superior results in comparison with the GSMM-based separation algorithm. However, the

addition of the ‘distant’ PSDs prior does not improve the separation results in comparison

with the GSMM-based separation algorithm.
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Chapter 1

Introduction

The problem of Blind Source Separation (BSS) has been an important research topic in a

variety of fields, including signal processing, medical imaging and communication. There

are numerous examples of real life scenarios, in which source separation is needed. A well

known example for BSS is the cocktail party problem, where multiple audio sources are

active instantaneously, and the listener must separate the audio sources from the received

mixtures.

Simply put, BSS can be described as the process of estimating N distinguished sources

from M mixtures [1]. Of course, there are many variants in the definition above that may

change the nature of the separation problem. For instance, the mixtures can be generated

by using a linear (instantaneous) or convolutive (un-echoic and echoic) combination of

the sources. Obviously, the convolutive mixing model is more challenging than its linear

counterpart. A different variant is related to the number of sources and mixtures. If the

number of mixtures is greater than (or equal to) the number of sources, the separation

problem is referred to as over-determined. The over-determined case has been extensively

examined in the literature and various BSS algorithms have been suggested for solving it

(for a detail survey, see [1]). The opposite scenario, in which the number of source is bigger

than the number of observations, is referred to as under-determined separation problem.

The under-determined scenario is much more challenging than its over-determined coun-

terpart, since there is not enough information on the relation between the sources and the

mixtures. In this case, prior knowledge or sophisticated heuristics must be incorporated

into the BSS scheme in order to obtain the desired separation.

5



CHAPTER 1. INTRODUCTION 6

In this work, we will focus on the most extreme situation of the under-determined

BSS problem, the single channel BSS. In this scenario, only a single mixture observation

is available. Furthermore, the mixture is assumed to be a linear combination of two (or

more) sources.

1.1 Single-Channel Blind Source Separation

Single-channel BSS has been a fruitful research topic in recent years. As a result,

many separation schemes have been proposed in order to overcome the inherent under-

determined characteristic of the single channel separation problem. Still, unlike its over-

determined counterpart, it seems that most of the current solutions for single-channel

BSS have not yet matured enough in order to leave the laboratories.

In the framework of single-channel BSS, our applicative task is to separate two sources

s1(t), s2(t) from their joint mixture x(t) -

x(t) = s1(t) + s2(t) (1.1)

Due to the under-determined nature of the BSS problem, a-prior information about the

sources must be incorporated in order to separate them from their mixture.

Computational Auditory Scene Analysis

One of the fundamental approaches for single channel BSS tried to mimic the psychoa-

coustic characteristics of the human auditory system [2–6]. Hence, the prior knowledge

that was incorporated within the separation scheme tried to exploit perceptual cues rather

than applying some statistical rule for source modeling. Bregman, in [7], provides sev-

eral examples for acoustical cues that can assist in grouping sound event, such as similar

harmonic structure and common onsets and offsets. Computational implementation of

such psychoacoustics rules in audio processing algorithms is also known as Computational

Auditory Scene Analysis (CASA).

There are many examples for CASA inspired single channel BSS algorithms. For

instance, Roweis [2] uses the fact that the human auditory system performs perceptual

grouping of the audio signal by using narrow frequency bands over short time frames,
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similar to the Short Time Fourier Transform (STFT). Under the assumption that per

time-frequency bin, only one source is dominant, Roweis proposed a source separation

scheme via binary masking. Duan et al. [4] provide an additional CASA-based algorithm

specifically for music source separation. Under the assumption that every sound source

is monophonic with a narrow pitch range, a separation scheme which is based on the

harmonic structure of the music sources is introduced. Bach and Jordan [3] suggest a

separation approach which is based on spectral clustering and graph cuts. As part of

the distance measure, the authors have introduced CASA-based perceptual cues. For

instance, if two time-frequency points are close, or if two sound events exhibits the same

time variation they are likely to belong to the same cluster. In general, it seems that

in most single-channel BSS algorithms, perceptual cues are becoming more attractive as

tools for improving the perceptual quality of the separated audio sources.

Independent Component Analysis

Due to the close similarity between over-determined and under-determined source sepa-

ration, several attempts have been made to adjust off-the-shelf separation solutions from

the over-determined realm into the single channel BSS separation challenge. One of the

most popular over-determined solutions is separation via Independent Component Anal-

ysis (ICA). In the context of single channel BSS, ICA-based separation schemes merely

assume statistical independence as the prior on the sources [8–12]. Traditional ICA tech-

niques can separate N statistically independent sources from M observations (N ≤ M).

Jang et al. [8] have proposed to describe each of the sources as a mixture of statistically in-

dependent components. This alteration has allowed the authors to develop an ICA-based

separation algorithm. Beierholm et al. [9] have proposed a simplification for this frame-

work and suggested to perform the ICA-based separation in the DCT domain instead of

the time domain. Further alterations of the ICA-based separation scheme [10, 11] have

suggested performing the separation within the wavelet domain (for achieving sparse rep-

resentation) or after a dedicated data-driven transforms. Independent Subspace Analysis

(ISA) is an additional derivation of ICA. In the ISA framework [12] the one dimensional

mixture observation is projected onto a higher dimensional feature space, e.g., STFT.

Then, for each time frame, the observation in the new feature space is divided into statis-
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tically independent subspaces. These newly formed subspaces will be used for the actual

sources separation.

In some cases, examples of the sources may be available before the actual separation

task. These examples can be used as a training sequence for a specific model-based source

separation scheme. Usually, following the learning stage, a codebook (CB) or a dictionary

of signal representatives is formed and can be incorporated within the separation scheme.

These CB-based separation algorithms usually differ from one another in the type of

model that is chosen for the signal representation and in the cost function that is used

for the actual source separation.

Gaussian Mixture Model

One of the most popular representation models is the Gaussian Mixture Model (GMM).

It assumes that a quasi-stationary signal can be approximated in each short time frame

by using a dictionary of stationary, statistically independent and zero mean Gaussian

random vectors. This representation can be quite easily investigated by observing the

Power Spectral Density (PSD) of the sources and their mixture. Using this model as

a prior for the single channel BSS problem has lead to many GMM-based separation

algorithms [13–23].

Benaroya et al. [13] have suggested Bayesian formalism for the separation of two GMM

generated sources from their observed mixture. Two separation criterions were introduced:

Minimum Mean Square Error (MMSE) and the Maximum A-Posterior (MAP). In order

to separate the inherent spectral shape information from its multiplicative gain (can

be regarded also as the audio strength or volume), Benaroya has further proposed a

generalization for the GMM - the Gaussian Scaled Mixture Model (GSMM). The evolved

source separation algorithm has produced superior separation results. In order to take

advantage of continuity cues as part of the separation scheme, Benaroya et al. [14] have

also suggested modeling the time correlation between adjacent time frames by introducing

a Hidden Markov Model (HMM) alongside the GMM prior. Thus, the learning stage does

not only include the estimation of the GMM parameters but also the transfer probabilities

of the HMM model.

One of the fundamental assumptions in the GMM framework is that only one rep-
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resentative from each source’s CB is active at any given time frame. Abramson and

Cohen [15] have suggested performing both the classification of the active pair and the

estimation process simultaneously. This joint framework allows control over the penalty

for any miss-detection of the CB representatives. Since the training signals do not al-

ways represent the actual source instance that was used in the mixture observation, a CB

adaptation framework was introduced in [16, 17]. Ozerov et al. have suggested altering

the CB representatives according to the actual mixture observation. In separation simu-

lations, this adaptation has provided superior separation results, however, it also requires

to know whether the sources are active or idle. Amiya et al. [18] have proposed not to

train a CB for each source independently, but to model the actual mixture of the sources

using GMM. This approach has given good separation results for small CB sizes, however

may be sensitive to over-fitting for larger CB sizes.

Several approaches have tried to improve the separation results by changing the feature

space that is currently used within the GMM framework, namely, the STFT domain.

In [19], a multiple STFT-windows representation is used in order to exploit the scale-

related features for the separation process. An additional approach is proposed by Litvin

and Cohen [24]. Instead of using the STFT domain for the separation, an altered version

of the Bark-scaled wavelet packet decomposition (BS-WPD) is used as the feature space

and the GMM separation is applied therein.

Auto Regressive Model

Another model that has been extensively used in speech-related application is the Auto

Regressive (AR) model. The AR model, unlike its GMM counterpart, excels in charac-

terizing the spectral shape of speech signals. By using the AR model to describe speech

signals, the model accuracy may improve. As a result, better separation performance can

be achieved.

Several separation schemes [25–29] have been suggested, in which, the sources are

described with a dictionary of AR processes. Srinivasan et al. [25] have suggested a

speech enhancement method by using a CB of AR processes for modeling the speech

signal and the interfering signal. The authors introduced a Maximum Likelihood (ML)

criterion for selecting the most probable CB representative from each source and used
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a Wiener filtering scheme for the removal of the interfering signal (noise). Obviously,

this speech enhancement algorithm can also be regarded as a single channel BSS method

which can extract each of the sources from their mixture.

A generalization of the ML estimator is provided by Srinivasan et al. in [26]. The

AR parameters, the excitation variance and the Linear Predictive Coefficients (LPC),

were regarded until now as constant parameters. In the generalized AR-based separation

scheme, these parameters are regarded as random variables and a MMSE estimator is

proposed for the actual source separation. Practically, the generalization allows several

CB entries to affect the sources separation, while the ML framework only allowed one

representative from each CB to define the source separation result.

One disadvantage of CB-based separation methods is the requirement to check all the

possible representatives from each source’s CB. Srinivasan et al., in [25], have suggested

reducing this computational complexity by initially estimating the noise spectral shape

through a long term noise estimator. An additional suggestion for reducing the compu-

tational complexity is given by Srinivasan et al., in [27]. Instead of using one unified CB

for noise modeling, the noise CB is actually divided into several smaller sub-sets. Each

of the CB sub-sets aims to describe a different type of noise.

Non-negative Matrix Factorization

Usually, the most challenging task in CB-based source separation methods is to distinguish

which CB entries are operational and their relative strength. In the GMM/AR framework,

for each observed PSD, the separation algorithms hunt for the best CB representative

from each source and its respective gain factor. This hunt is usually computationally

expensive. The problem at hand can be addressed in a more general term: the objective

is to decompose the observed non-negative data (mixture PSD) into a linear, non-negative

combination of non-negative dictionaries (PSDs that have evolved from the sources’ CBs).

Non-negative Matrix Factorization (NMF), as was first introduced by Lee and Seung [30],

is an efficient, matrix-based factorization method that decompose a non-negative matrix

into two non-negative matrices. The resulting non-negative matrices are usually identified

as a basis matrix (stores the dictionary vectors in its columns) and as a gain matrix (stores

in each row a time-varying gain vector for each basis entry). By using this decomposition,
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the observed PSD of the mixture can be represented using a predefined CB of PSDs and

their time-varying gain factors.

Numerous NMF-based single channel BSS methods were recently suggested [30–43].

A simple and straightforward separation method can evolve from applying the NMF

framework on the observed PSD [30, 31]. Following a classification of the resulting basis

vectors into distinguished source, an estimation of each source’s PSD is obtained. A CB-

based separation method can also be suggested in this context by constructing the basis

matrix in an off-line learning stage [31].

In order to enhance the performance of the basic NMF-based separation scheme, sev-

eral algorithmic alterations and additional priors were introduced. Smargadis, in [32],

has suggested to change the NMF formulation in order to incorporate time dependencies

between adjacent time frames. Instead of separating the mixture independently at each

time frame, Smargadis introduced the Convolutive NMF framework, in which, the NMF

CBs spans several time frames. Additional suggestion for incorporating time correlation

into the NMF framework was suggested by Virtanen [33]. Virtanen introduced a con-

straint into the NMF cost function that favors gain factors without rapid changed. This

constraint can define implicitly that the signal representatives are not vastly different

between two adjacent time frames.

An additional prior that is widely used in NMF-based separation schemes is the spar-

sity requirement. The sparseness attribute in a dictionary-based representation schemes

simply states that only a few CB representatives are required in order to describe the

observed data. Virtanen [33] has introduced a sparsity constraint into the NMF cost

function, by using L1 penalty on the gain matrix columns. Recently, a new derivative of

NMF was presented - Sparse NMF (SNMF). The SNMF still performs matrix decompo-

sition, but will tend to converge to sparser factorization results. Schmidt and Olsson [34]

have proposed to use the SNMF framework for the factorization of the mixture PSD

matrix into gain and basis matrices. As a result, the sources are separated under spar-

sity prior. In a later work, Schmidt and Olsson [35] further suggested to use the SNMF

results in a post-processing, linear estimation scheme for source separation performance

enhancement.

In order to improve the perceptual separation quality, several CASA-driven priors
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were introduced to the NMF-based separation algorithm. Virtanen [36] has presented a

perceptually weighted NMF framework for single channel BSS. The altered NMF scheme

assign a weight for each frequency band according to the loudness perception of the human

auditory system. Additional approach for incorporating CASA cues is presented by Kirbiz

et al. [37]. Instead of altering the NMF cost function, a pre-processing stage is applied in

order to strengthen the signal parts that are significant for the human auditory system.

Both CASA-driven suggestions have produced superior perceptual source separation in

comparison with other NMF-based separation algorithms.

The NMF-based source separation is performed under the assumption that the ob-

served mixture PSD can be represented as a linear combination of the sources PSDs.

However, what if this assumption does not hold? In this case, one can always assume

that the additivity requirement holds in the complex STFT domain. A decomposition

scheme that not only considers the magnitude of the STFT representation but also re-

gards the phase information is referred to as Complex NMF. This altered decomposition

scheme is used in [38,39] for single channel BSS.

Our last example for a NMF extension [40,42] combines the Itakura-Saito (IS) distor-

tion measure with the NMF framework. The IS distortion measure is widely used in the

field of speech enhancement as a distance function between two audio spectral shapes.

By integrating it into the NMF framework, one can combine a cost function that is more

suitable for spectral shapes with an efficient matrix decomposition scheme.

In conclusion, one can observe that all of the mentioned methods introduce some kind

of prior information into the separation process. The prior can evolve from perceptual

auditory cues, off-the-shelf over-determined separation concepts, a statistical model or

from a pre-defined dictionary for each source.

1.2 Overview of the thesis

In this work, we investigate the problem of single channel blind source separation of audio

signals. Our emphasis is on a specific branch of single channel BSS solutions: Codebook-

based separation algorithms. These methods rely on a predefined model-based CB that

is used throughout the separation process. In this section, we briefly describe the original
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contribution of this thesis.

We begin with a comparison between three types of CB-based separation algorithms:

GMM, AR and NMF-based separation schemes. These three algorithmic families aim to

separate a quasi-stationary mixture in the STFT domain by using linear combination of

stationary spectral shapes (from a predefined CB) with time-varying gain factors. We

show, in our comparison, that the three types of separation solutions basically obey the

same fundamental structure: off-line learning stage, gain factors estimation and source

separation. Furthermore, we identify that the GMM-based separation cost function, which

relies on a Bayesian formalism, is practically identical to the IS distortion measure. Inter-

estingly, the IS distortion measure is also used as the cost function within the AR-based

separation framework. Similar connection is also identified between the Kullback-Leibler

(KL) Divergence version of the NMF-based separation cost function and the IS distortion

measure. In order to assess the separation performance of these CB-based separation

schemes, we perform several separation simulations with real audio data. Our simula-

tion results have shown that the GMM-related separation algorithms produces superior

separation performance1 in comparison with its AR and NMF counterparts.

Following the CB-based algorithmic comparison, we further investigate the cost func-

tion and priors of the GMM/AR/NMF-based separation schemes. We identify that

throughout the separation process, the GMM/AR-based cost functions treat all the fre-

quency bins (in a specific time frame) identically. This behavior is clearly not ideal if the

sources exist only in a smaller range of frequency bins and do not populate the entire

frequency range. In addition, it is intuitively sound that frequency bins with sufficient

energy are more important than frequency bins with negligible energy. By using these

arguments, we propose a generalization for the GMM/AR-based separation algorithms.

Instead of assuming a uniform contribution for each frequency bin, we introduce frequency-

dependent weights into the separation cost function. The weights’ relative strength can

be determined according to observed mixture energy distribution or according to an off-

line learning stage. We further develop the frequency dependent weights addition into an

actual single channel BSS algorithmic flow and also show that the separation cost func-

tion can evolve from a generalized Gaussian Mixture Model. In order to assess the newly

1The separation quality was measured by the SIR and SDR measures (See chapter 4.1).
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introduced separation algorithm performance, we have compared it to the GSMM-based

separation algorithm. The experimental results of the frequency-dependent separation

have proven to be superior to the GSMM-based results.

While observing the structure of the GMM/AR/NMF-based separation cost functions,

an additional characteristic behavior of the separation schemes was identified. It seems

that while hunting for the best pair of CB representatives, the only applied objective is

to match the observed mixture’s PSD with the PSD that evolved from the CB repre-

sentatives’ selection. Aside from the statistically independent requirement and the prior

probability of each CB entry, there is no other constraint on the sources’ characteristics.

Furthermore, it seems that throughout the entire separation flow, there is no mention of

the actual goal of the algorithm: to successfully separate the mixture to its components.

By using this argument, we introduce an additional prior to the separation cost function.

This addition considers how ‘distant’ the sources’ estimated PSDs are. By combining this

requirement with the original objective, better separation performance may be achieved.

Following the prior introduction, we begin from the GSMM-based separation framework

and embed the ‘distant’ PSDs prior therein. As a result, an altered GMM/AR-based

separation algorithm is presented and analyzed. In our experimental results, the ‘distant’

PSDs prior have produced similar separation results in comparison with the GSMM-based

separation algorithm, but it seems that it still suffers from minor stability issues.

1.3 Organization

The organization of this thesis is as follows:

In Chapter 2 we introduce a survey of the current solutions for single channel BSS and

further discuss the common characteristics of several CB-based separation methods. Fol-

lowing the survey, we discuss, in Chapter 3, two proposed generalizations for the existing

CB-based single channel BSS algorithms. The first suggestion, in Section 3.2, introduces

a frequency weight for each time-frequency bin in the STFT representation. The second

suggestion, in Section 3.3, introduces an additional prior to the separation cost function

that requires that the estimated PSDs will be as distant as possible. Chapter 4 is dedi-

cated for simulating the CB-based separation algorithm and to assess the quality of the
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newly proposed separation algorithms. Two separation experiments of real audio data

are conducted and their results are presented and analyzed. In Chapter 5, a summary of

the thesis is presented and several future directions are discussed.



Chapter 2

Single Channel Source Separation

Methods

2.1 Introduction

In this chapter, we provide a survey on single-channel BSS methods. We have divided

the methods into five categories according to the type of prior that is being used within

the separation scheme. The categories are:

• CASA: We begin by describing separation algorithms that are based on Computa-

tional Auditory Scene Analysis. These methods incorporate perceptual cues within

the source separation framework (section 2.2).

• ICA: Although ICA separation methods are mainly suited for over-determined BSS

problems, several ICA concepts have been used also for single-channel BSS (section

2.3).

• GMM: This category includes separation algorithms that incorporate the GMM as

the sources model (section 2.4).

• AR: This category includes separation algorithms that have evolved from speech-

related applications. The separation algorithm assumes that the source can be

characterized using a CB of AR processes (section 2.5).

16
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• NMF: This category includes separation algorithms that use the NMF framework

for source separation (section 2.6).

For each category, our survey begins with a description of the theoretical background

of the specific prior. We then describe several examples of source separation algorithms

that are using the specific prior. Consecutively, the benefits and disadvantages of the

separation algorithms are described and further algorithmic extensions are introduced.

As a closure to the literature survey, we compare in section 2.7 between the

GMM/AR/NMF frameworks for single channel BSS, with attention to their strengths,

weaknesses and similarities between them.

2.2 CASA-based Separation Methods

One approach for addressing the single channel BSS challenge is by incorporating per-

ceptual cues for audio segregation. Bergman, in [7], lists several psychoacoustics rules

and cues that allow the Human Auditory System to distinguish between audio streams.

Bregman claims that sound events can be grouped together according to acoustical char-

acteristics such as common onset or offset and harmonic structure. Computation imple-

mentation of such psychoacoustics rules in audio processing algorithms is also known as

Computational Auditory Scene Analysis (CASA).

Probably the most popular CASA-based single channel BSS algorithm is given by

Roweis, in [2]. Roweis claims that the human auditory system performs perceptual group-

ing of the audio signal and that its subparts are believed to be narrow frequency bands

over short time, a concept which is similar to investigating the STFT of a signal. He then

suggests an estimation, ŝi(t), of the ith source by using -

ŝi(t) = αi
1(t) · b1(t) + αi

2(t) · b2(t) + . . . + αi
K(t) · bK(t) (2.1)

where {bk(t)}K
k=1 are the time-varying sub-band signals that were derived from the obser-

vation and {αi
k(t)}K

k=1 are the time-varying masking signal that are used to estimate the

ith source from the mixture. In order to easily separate the sources, Roweis also assumed

that the masking signals are binary and piecewise constant. The binary assumption is

equivalent to demanding that the sources do not have overlapping frequency components
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and the demand for piecewise constant function can be interpreted as a quasi-stationary

behavior of the sources. The separation algorithm itself is based on an off-line learning

stage in which a Hidden Markov Model (HMM) is fitted using narrow-band spectrograms1

of each source independently. These two HMMs are combined into a Factorial Hidden

Markov Model (FHMM), which is used to find the most probable states in each HMM

for every given mixture observation. These states are used to define the binary mask

that eventually allows us to separate the underlying sources, using eq. (2.1). How the

usage of a binary mask is justified? This CASA-based method, as many other mask-

ing schemes, observes the mixture’s content in each time-frequency bin. It is assumed

that when two sources are present in the same bin, one is dominant while the other is

negligible. Obviously, when the audio sources have similar spectral characteristics, this

assumption may deteriorate the separation performance. In [5,44], a generalization of the

binary masking is presented. The generalization, denoted as soft mask, allows two signals

to co-exist in the same time-frequency bin. Instead of seeking for the dominant source

by using magnitude information (as in the binary mask framework), here we seek for a

dominant source in the log-spectrum domain. As reported in [5,44], this approach allows

for superior separation results in comparison with the binary mask separation scheme.

Duan et al. [4] provide a CASA-based algorithm specifically for music source separa-

tion. Under the assumption that every sound source is monophonic with a narrow pitch

range, the algorithm introduces an unsupervised (i.e. without a training stage) separa-

tion scheme which is based on the Average Harmonic Structure (AHS) of the sources2.

It is argued that harmonic structure is approximately an invariant feature of harmonic

musical instruments. The separation algorithm in [4] estimates the harmonic structures

directly from the time-frequency representation of the mixture and clusters it to AHSs

according to the number of sources. As a consequence, each time frame of the mixture

in the STFT representation can be separated to its components according to the AHS

information. The suggested method, according to the authors, performs well in com-

parison with other state-of-the-art separation techniques. Nevertheless, it is a tailored

1The HMM states were actually initialized by a GMM, thus, the CB here can be interpreted as a

GMM with temporal a-prior information.
2The instrument harmonic structure is defined as the vector of dB scale amplitudes of the significant

harmonics.



CHAPTER 2. SINGLE CHANNEL SOURCE SEPARATION METHODS 19

algorithm for harmonic sound sources and cannot extract speech or other non-stationary

sources without harmonic characteristics. In addition, the algorithm can only separate

monophonic sources, thus, a polyphonic source might be identified as numerous sources,

which is undesired.

Bach and Jordan [3] suggest a different approach for single channel BSS of audio sig-

nals. They state that a mixture separation to two sources can be viewed as a segmentation

problem in the STFT domain. Instead of using an off-the-shelf computer vision algorithm

for the segmentation, Bach and Jordan introduce a segmentation approach that is based

on spectral clustering (originated from graph theory). In order to cluster and distinguish

between the sources, several CASA-based grouping cues are used for the clustering metric

definition. For example, if two time-frequency points are close or if two sound events ex-

hibits the same time variation they are likely to belong to the same cluster. For parameter

tuning within the clustering metric, a learning stage should be used with similar signals.

Despite of the interesting combination of graph theory and CASA, the computational

effort of performing graph-based segmentation on the mixture spectrogram is extremely

expensive.

Another example for using auditory system characteristics for single channel BSS is

given by Pearlmutter et al. [6]. The authors make use of the head-related transfer func-

tion (HRTF), which imposes different linear filters upon sources arising at different spatial

locations. The HRTF is incorporated as a cue that may help in the source separation prob-

lem. In this separation scheme, each source is represented using a sparse over-complete

dictionary that was trained in an off-line stage. Each dictionary component is convolved

with the suggested HRTFs. The separation itself tries to find the most probable linear

combination gains under sparsity criteria (by using L1 constraint on the gains matrix).

It is also shown in [6] that the usage of the HRTF enabled separation in situations where

using sparsity constraint is not enough.

Even though only four examples of CASA-based separation algorithms were mentioned

here, CASA-driven cues and heuristics were embedded in many additional separation al-

gorithms for performance enhancement. For example, the introduction of time continuity

priors into the separation scheme of many separation algorithms fits well into the CASA

concepts. We will address these algorithms, among others, in the next chapters.
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2.3 ICA-based Separation Methods

Independent Component Analysis (ICA) is a well known approach for BSS problem (see [1]

for a survey of ICA based BSS methods). The main assumption in ICA is that the sources

are non-Gaussian and statistically independent. ICA algorithms estimate the un-mixing

matrix that maps the observed signals to the original sources and is known to perform

well in over-determined BSS problems. However, under-determined problems, such as

the single channel BSS, remains problematic for the ICA approach. In [8], Jang et al.

have used ICA ideas for imbuing a-prior information on the signals and have further sug-

gested an ICA-based separation scheme. As opposed to over-determined cases, in which,

ICA algorithms can separate N statistically independent sources from M observations,

here the authors suggest describing each source as a mixture of statistically independent

components. This can be formulated as -

si(t) =

Ki∑

k=1

ak
i · bk

i (t) (2.2)

Where si(t) is the ith source (i ∈ {1, 2}), {bk
i (t)}Ki

k=1 are the independent components for

the ith source and {ak
i }Ki

k=1 are the linear combination coefficients for the ith source. In

an off-line stage, the un-mixing matrix Wi = A−1
i is estimated for each source by using

a Generalized Gaussian Distribution for the independent components and searching for

a linear transformation Wi that makes the components as statistically independent as

possible. The separation stage itself is using a Maximum Likelihood (ML) approach, as

follows -

(s∗1(t), s
∗
2(t)) = argmax(s1(t),s2(t)) {p (s1(t)|W1) · p (s2(t)|W2)} (2.3)

s.t. x(t) = λ1 · s1(t) + λ2 · s2(t)

Where λ1, λ2 are the gain factors of the sources s1(t), s2(t) respectively. The optimization

process is alternately estimating the sources and the gain factors until convergence. This

separation algorithm can also be interpreted as a time domain CB separation scheme,

where the rows of the Wi are the CB components of the ith source.

A simplified version of this algorithm has been proposed in [9]. Instead of learning a

CB and performing the separation in the time domain, the Discrete Cosine Transform
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(DCT) domain is used as the feature space. The authors assume that both sources evolved

from the same mixing matrix - the DCT matrix (as opposed to [1], where the mixing

matrices are data-driven), and have proposed various priors for the DCT coefficients, e.g.

Laplacian, Gaussian and even GMM. The priors are estimated in an off-line stage and

Bayesian framework is used to estimate the sources and their respective gains.

Additional examples for decomposing the signal into multiple components may include

wavelet transform or various data-driven transforms. For example, in [10], an ICA-based

single channel BSS algorithm for bio-medical signals is proposed. The separation algo-

rithm combines the Empirical Mode Decomposition (EMD) with ICA. EMD is a signal

analysis tool that is able to decompose the signal into a set of spectrally independent

oscillatory modes. The advantage of EMD, compared to wavelets, is that the EMD is

a data-driven transformation. This means that it can decompose a signal without prior

knowledge about the embedded sources within the mixture (see [45] for more information

on EMD). Even though the EMD-ICA separation algorithm was designed for bio-medical

signals, it may be of use for single channel BSS of audio signals as well.

Another method that takes advantage of ICA techniques for single channel BSS is

presented in [12]. It describes a derivation of ICA, named Independent Subspace Analysis

(ISA). In the ISA framework, the one dimensional observation is projected onto a higher-

dimensional feature space (the STFT domain is used in [12]). Separation is achieved

by dividing the observation in each time frame into statistically independent subspaces.

The aim is that each subspace will represent a genuine source. As opposed to previously

mentioned separation algorithms, this ISA approach does not perform an off-line learning

stage in order to identify the sources’ subspaces. On the contrary, the authors are using the

mixture observation in the STFT domain in order to decide on the distinctive subspaces.

First, Singular Value Decomposition (SVD) is used to estimate the number of overall

component in the union of the subspaces. Second, a clustering algorithm, whose metric is

the Kullback Leibler (KL) Divergence3, is applied in order to group similar components

into a distinctive subspace. The fact that there is no need for an off-line learning stage

is encouraging since it captures the true essence of Blind Source Separation, however, it

3The KL divergence is often used to define a distance between two probability distributions and is

defined as: DKL(p‖q) =
∫

p(x) · log p(x)
q(x) dx
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is also intriguing in which cases the separation between sources in this framework is even

possible. Davies et al. [46] show that ICA-based single channel BSS algorithms requires

that the sources are reasonably spectrally disjoint in order to allow separation from their

joint mixture.

2.4 GMM-based Separation Methods

In this section, several single channel BSS algorithms will be described, in which, the a-

prior knowledge about the sources is embedded using a Gaussian Mixture Model (GMM).

The GMM can be regarded as a CB of Gaussian states, {θi}K
i=1, where each of the K

states is identified by a covariance matrix Σi and a zero mean. Therefore, the probability

density of a Gaussian mixture, s, can be defined as -

ps(s) =

Ki∑
i=1

Pr (θi) · p(s| θi) (2.4)

where Pr (θi) is the a-prior probability of each Gaussian state and s| θi ∼ N(0, Σi). We

will denote the GMM parameters’ set as Π = {Pr (θi), θi}K
i=1.

It is assumed that two audio sources are statistically independent and quasi-stationary,

i.e., their spectral contents are approximately constant over short periods of time. Under

the quasi-stationary assumption, if we will observe the Gaussian state’s covariance matrix

after Discrete Fourier Transform (DFT), it will become diagonal and can be interpreted

as the PSD of the Gaussian state. Thus, each covariance matrix Σi can be represented

using σ2
i (f) in the DFT domain (where f is the frequency bin and 0 ≤ f < F ).

In [13], a Bayesian formalism has been suggested for the separation problem and two

separation criterions were introduced: Minimum Mean Square Error (MMSE) and the

Maximum A-Posterior (MAP). The separation process is divided into three parts:

1. An off-line clustering algorithm, such as Expectation-Maximization (EM) or K-

means, is applied on each source in order to learn the GMM parameters. The

clustering is performed on observations of the estimated PSD of the source within

short time frames.

2. Given the a-prior GMMs, (Π1, Π2) of the sources (s1, s2) respectively, and the mix-

ture’s observation, x, one can estimate the posterior probability, p(θ1
i , θ

2
j |x).
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Using Bayesian framework, this can be formulated as -

p(θ1
i , θ

2
j |x) ∝ p(x| θ1

i , θ
2
j ) · Pr (θ1

i ) · Pr (θ2
j ) (2.5)

i.e., this formulation tries to estimate the most probable pair of GMM states given

the current observation.

3. The actual separation of the sources. The source estimation relays heavily on the

chosen minimization criterion (MAP or MMSE).

The MAP estimator assumes that only the most probable pair (θ1
î
, θ2

ĵ
) was active

in the creation of the mixture observation. Thus, the problem degenerates into a

mixture of two Gaussian variables, which can be solves using a Wiener filter in the

STFT domain. If we will denote X(f, t) as the STFT of the observation x, the MAP

estimator can be formulated as follows -

(MAP) Ŝ1(f, t) =
σ2

1,̂i
(f)

σ2
1,̂i

(f) + σ2
2,ĵ

(f)
·X(f, t) (2.6)

The MMSE estimator, on the other hand, uses all the GMMs’ available pairs, and

performs a weighted sum of their related Wiener filtering separation scheme -

(MMSE) Ŝ1(f, t) =
∑
i,j

p(θ1
i , θ

2
j |X(f, t)) ·

(
σ2

1,i(f)

σ2
1,i(f) + σ2

2,j(f)
·X(f, t)

)
(2.7)

Benaroya et al., in [13], also address an inherent restriction in the GMM separation

scheme. In the context of audio signals, the same sound (PSD) might be repeated with

different amplitudes. However, the GMM is sensitive for amplitude changes, thus, will

not identify the same sound when played with different gains. For this reason, the authors

introduce the Gaussian Scaled Mixture Model (GSMM), which adds an additional gain

factor for each Gaussian component. Therefore, given the gain factors, {√ak}K
k=1, the

GSMM can be regarded as a GMM with covariance matrices {ak · Σi}K
k=1.

Using the current flow for estimating the separated sources, the stages of separation

will now contain:

1. An off-line clustering stage (as in the GMM case).

2. The calculation of the posterior probability of a pair of GSMM states, p(θ1
i , θ

2
j |x), is

now untractable, due to the additional gain factors. Instead, an attempt to estimate
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the gain factor is first applied using a ML approach -

(â1
i , â

2
j) = argmax(a1

i ,a2
j )

{
p(θ1

i , θ
2
j | x, a1

i , a
2
j)

}
(2.8)

s.t a1
i ≥ 0, a1

j ≥ 0

Where a1
i is the gain factor of the ith state within the 1st source’s GSMM and

a2
j is the gain factor of the jth state within the 2nd source’s GSMM. Benaroya et

al. perform the ML estimation using a multiplicative update rule4. The posterior

probability of a given pair can now be formalized as -

p(θ1
i , θ

2
j |x) =

∫∫

a1
i , a2

j≥ 0

p(θ1
i , θ

2
j |x, a1

i , a
2
j) · p(a1

i )p(a2
j) da1

i da2
j (2.9)

u p(θ1
i , θ

2
j |x, â1

i , â
2
j)

3. The actual separation of the sources. Again, two estimation criterions are suggested:

MAP and MMSE. If we will denote the most probable pair of GSMM states as

(θ1
î
, θ2

ĵ
), than the MAP criterion can be formulated as -

(MAP) Ŝ1(f, t) =
â1

î
· σ2

1,̂i
(f)

â1
î
· σ2

1,̂i
(f) + â2

ĵ
· σ2

2,ĵ
(f)

·X(f, t) (2.10)

One can observe that the main difference from the GMM’s MAP estimator is the

added gain factors to each of the Wiener filter’s participating PSDs.

The MMSE estimator takes advantage of all the GSMM’s pair in constructing the

estimator and can be formulated as -

(MMSE) Ŝ1(f, t) =
∑
i,j

p(θ1
i , θ

2
j |X(f, t)) ·

(
â1

i σ
2
1,i(f)

â1
i σ

2
1,i(f) + â2

jσ
2
2,j(f)

·X(f, t)

)

(2.11)

In conclusion, one can address the GMM (and GSMM) approach as an attempt to

describe a non-stationary signal by using a dictionary of stationary PSDs. At each time

frame, a different pair contributes to the estimation, hence, the suggested PSD is time-

varying.

In the context of audio signals, it is assumed that there is a correlation between

adjacent time frames in the STFT domain. However, the GMM approach separates

4The multiplicative update rule is a simplified version of the NMF update rule for two components.
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each time frame independently. In [14], Benaroya et al. suggest to model the time

correlation between adjacent time frames by introducing an HMM alongside the GMM

prior. Instead of merely using the prior probability Pr (θ = θi) for each GMM state, an

additional transfer probability Pr (θ(t) = θi| θ(t− 1), . . . , θ(t− (L− 1)) between states is

added, where L represent the time ’depth’ of the transfer probability. However, according

to the experimental study in [14], the additional transfer probability (tried with L = 1)

did not improve the separation performance.

Another assumption that CB-based separation algorithms significantly relay on, is the

ability to recreate the observed signal features using a pre-defined CB. In the GMM case,

it is assumed that a CB of PSDs can, on the one hand, represent the characteristics of the

observed source and on the other hand, be distinctive enough to allow correct separation of

the signal. In [16, 17], an attempt is made to enhance the sources’ dictionaries according

to the observed mixture. The idea is to use an adapted source model (Π′
1, Π

′
2) that is

initially based on the a-prior CBs, (Π1, Π2), but can also be affected by the mixture’s

observation characteristics. The general adaptation model can be formulated using a

MAP framework, i.e. -

(Π′
1, Π

′
2) = argmax(π′1,π′2) {p(X(f, t)|π′1, π′2) · p(π′1|Π1) p(π′2|Π2)} (2.12)

There is an inherent tradeoff here between keeping the adapted model as close as

possible to the a-prior model and between tuning the adapted model according to the

environmental changes within the observation (by setting, for example, p(π′|Π) ∝ const).

In [16], Ozerov et al. confronted the problem of separating a singer voice from band’s

music. The mixture is initially segmented into vocal/non-vocal frames. The non-vocal

frames will be used as the training set for the music CB while the vocal frames will

be used to refine the speech CB. The authors suggest two methods for the speech CB’s

adaptation: changing the entire structure of the CB by incorporating EM framework,

or only training and applying a filter on the dictionary in order to describe the changed

environment. In [17], the general theoretical framework of the CB adaptation is presented

and several adaptation probability priors are investigated. There are several limitations

for the suggested separation algorithm: first, in order to identify vocal/non-vocal frames,

a Voice Activity Detector (VAD) is required that may introduce further inaccuracies to
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the separation process. Second, it is further assumed that speech in not always active.

This assumption is highly dependent on the separated signals types and cannot always

be used.

One of the fundamental assumptions in the GMM framework is that only one pair of

states, (θ1
i , θ

2
j ) is active in a given time frame. During each time frame the active pair

is first selected and then used in the separation scheme. In [15], Abramson and Cohen

suggest to perform both the classification of the active pair and the estimation process

simultaneously. The Authors present a combined risk function for the entire separation

scheme that allows us to express and control the penalty for specific miss-detection of

pairs.

Another facet to the GMM approach that has been further investigated is the selected

feature domain. The GMM approach uses the STFT domain for the separation of the au-

dio signals since it provides a convenient time-frequency observation on the non-stationary

signal. In [19], a multiple STFT-windows representation is used in order to exploit the

scale-related features for the separation process. Prior to the actual separation, an off-line

learning stage is used in order to create several PSD dictionaries - one for each window

length. Starting from the widest window (can be interpreted as a coarse-to-fine separa-

tion scheme), the active components of each source are identified5 and only the residual

(the signal part that was not identified by any of the sources) is once again analyzed by

the next STFT window. Although the experimental study in [19] did not show signifi-

cant improvement in the separation performance, it still can lead towards multi-resolution

techniques for single channel BSS.

An additional trial to perform GMM-based source separation was conducted by Litvin

and Cohen [24]. Instead of using the GMM framework within the STFT domain, the

authors used an altered version of the Bark-scaled wavelet packet decomposition (BS-

WPD) as the feature space and applied the GMM framework there. The number of

frequency bins in the BS-WPD is smaller in comparison to the frequency bins in the STFT

domain, hence, dimensionality reduction is achieved in the new framework. Moreover, it

5The identification of the active components here is quite different in comparison to the GMM scheme.

Here, much like in the NMF approach (see chapter 2.6) several Gaussian components from each source

can be active instead of only a single pair.
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seems that in real audio separation experiments, the BS-WPD feature space results were

identical to the GMM results and even superior for smaller CB sizes.

Lately, a new path for achieving source separation was investigated under the GMM

model. In every GMM-based separation algorithm, a generative model of the sources

is pre-defined and incorporated in order to distinguish each source within the mixture.

In [18], Emiya et al. proposed to model the mixture’s behavior rather than training

the sources’ models. Furthermore, by observing the actual separation method it seems

that each source component is extracted using a mask (per time-frequency bin). For

example, in eq. (2.7), for each CB pair the source are estimated according to the posterior

probability of the CB pair and according to the evolved Wiener filter. Following this

concept, the authors suggest a general way to describe the masking process -

αi(t, f) =
K∑

k=1

gk(t) · wi(t, f) (2.13)

Where Ŝi(t, f) = αi(t, f) ·X(f, t), K represents the number of CB representatives, gk(t) is

a time-varying gain factor and wi(t, f) is a pre-defined filter for extracting the ith source

from the mixture. Obviously, the basic GMM-based separation schemes can be describe

as private cases in this general pattern. Consecutively, a two stage separation scheme is

proposed. First, the posterior probability for each of the mixture’s CB representatives

is calculated (this is identical for calculating {gk(t)}K
k=1). Second, a pre-defined filter

(wi(t, f)) is used for estimating the various sources. Within the experimental study, this

approach produced better results for small CB sizes, but was inferior for larger CBs,

probably due to over-fitting. Still, the current suggestion only provides generalization for

the basic GMM model, while the GSMM extensions are not addressed here.

2.5 AR-based Separation Methods

In this section, we introduce CB-based separation methods that evolved from the field of

Speech Enhancement. Simply put, Speech Enhancement is a term used to describe algo-

rithms for improving the speech SNR or quality in a noisy environment. Early Speech

Enhancement algorithms rely on the fundamental assumption that the noise characteris-

tics are quasi-stationary, i.e., in comparison with the speech signal, the statistical behavior
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of the noise signal is slowly varying. By assuming quasi-stationary prior, these algorithms

devise noise estimation schemes that use long-term statistics (For a review on Speech

Enhancement algorithms, refer to [47], chapter 44).

Nevertheless, what if the interference does not fall under the Quasi-stationary criteria

(e.g. music, siren or even an additional speaker)? In these scenarios, the performance

of the enhancement algorithm will deteriorate significantly. In [25–27], Srinivasan et al.

have suggested a speech enhancement scheme that instead of assuming quasi-stationary

prior on the noisy environment, incorporates a-prior information on the noise and speech

signals by using a pre-defined dictionary of AR processes for each source. The usage of

the AR process is widely common in speech-related application mainly for modeling the

spectral envelope of the speech signal in the STFT domain. An AR process of order P

can be described as -

s(n) =
P∑

i=1

ai · s(n− i) + u(n) (2.14)

Where s(n) represents the source, θ = {ai}P
i=1 are the Linear Prediction Coefficients

(LPC) and u(n) is a white (assumed Gaussian) noise with excitation variance σ2. By

looking at the spectral shape, P (f), of an AR process -

P (f) =
σ2

|A(f)|2 ,Where A(f) = 1 +
P∑

n=1

an · e−2πj·fn (2.15)

it can be seen that the actual spectral shape is dominated by the LPC, while the signal’s

relative strength is controlled by the excitation variance. Since the separation goal is to

identify the source regardless of its relative strength, the pre-defined CBs representatives

should contain only the LPC parameters, i.e. Π = {θi}K
i=1.

In [25], a ML estimation framework is suggested for the source separation. Given the

mixture observation, the algorithmic goal is to identify the active representatives, (θ1
i , θ

2
j ),

of the two CBs, (Π1, Π2), respectively. The ML approach can be formulated as -

(̂i, ĵ) = argmax(i,j)

(
maxσ2

1 ,σ2
2

{
p(x| θ1

i , θ
2
j ; σ2

1, σ
2
2)

})
(2.16)

As shown in [25, 48], the logarithm of eq. (2.16) in the STFT domain can also be

described as the Itakura-Saito (IS) distortion measure6 between the observed spectral

6The IS distortion measure between two spectral shapes Px(f), Py(f) is defined as -

DIS(Py, Px) =
1
2π

∫ 2π

0

(
Py(f)
Px(f)

− ln
Py(f)
Px(f)

− 1
)

df
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shape and the combined power spectrum of the chosen pair from the sources’ CBs. Thus,

the ML criterion in the frequency domain can be formulated as -

(̂i, ĵ) = argmin(i,j)

(
minσ2

1 ,σ2
2
{DIS(Px, Pij)}

)
(2.17)

Where Pij(f) =
σ2
1

|A1
i (f)|2 +

σ2
2

|A2
j (f)|2 is the chosen pair’s power spectrum. In order to identify

the active pair, one must first estimate the optimal excitation variances that will minimize

the IS distortion measure. Due to the non-linear structure of the IS distortion measure, the

excitation variance estimation is untractable. Under the assumption of small modeling

error, a linear approximation of the IS distortion measure is used and the excitation

variance estimation is obtained by simply inverting a 2× 2 matrix.

The separation process can be divided into three parts:

1. Off-line Learning Stage:

In this learning stage, a CB of AR processes is obtained in order to describe each of

the sources. Each source is described by a clean, unmixed learning sequence, which

is divided into time frames. First, for each time frame, the appropriate LPC param-

eters are estimated. Hence, a set of observed AR processes that describe the training

set of the source is created. Second, a clustering algorithm, such as Generalized Lloyd

Algorithm, is used in order to create the CBs, Π1 = {θ1
i }K1

i=1 and Π2 = {θ2
j}K2

j=1, from

the observed AR processes. Further details on the clustering scheme can be found

in [49,50].

2. Excitation Variance Estimation:

As part of the actual source separation, for each mixture observation, the optimal

excitation variances, (σ2
1, σ

2
2), are estimated for each of the CBs pairs. This is a

crucial stage in the separation scheme since it identifies the relative strength of the

representatives from the sources’ CBs. The CBs pair, (θ1
î
, θ2

ĵ
), that minimizes the

IS distortion measure, according to eq. (2.17), will define the PSD shapes of each

of the estimated sources.

3. Wiener Filtering:

A Wiener filtering scheme is applied for the actual source separation. Denoting
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X(f, t) as the STFT of the mixture observation, the ML estimator can be formulated

as follows -

Ŝ1(f, t) =
P 1

î
(f)

P 1
î
(f) + P 2

ĵ
(f)

·X(f, t) (2.18)

Where Ŝ1(f, t) is the estimation of the 1st source in the STFT domain. In addition,

P 1
î
(f) =

σ2
1

|A1
î
(f)|2 and P 2

ĵ
(f) =

σ2
2

|A2
ĵ
(f)|2 are the estimated PSD shapes of each the

sources’ CBs respectively.

As can be seen from the above ML separation framework, an exhaustive search over

the CBs representatives’ set is needed in order to estimate the sources from their mixture.

In order to ease the amount of calculations, Srinivasan et al. have suggested a sub-optimal

estimation scheme, in which, the noise PSD is first estimated using long term statistics

(e.g., minimum statistics approach as presented in [51]). Then, according to this initial

guess, the speech and noise CBs’ representatives and excitation variances are iteratively

estimated. An additional extension is given in [27], in which, instead of regarding all the

entries of the noise CB, the noise dictionary is actually divided into several small sub-

sets. Each of the CBs sub-set is aimed to describe a different type of noise. Once again,

the authors suggest using a long-term noise estimator to identify the noise sub-set and

then perform the AR-ML source separation scheme using only the noise sub-set as the

noise CB. In order to enhance the separation performance, an additional implementation-

related algorithmic modification is suggested in [25]. Instead of describing the mixture’s

spectral shape only with the PSD of the optimal pair of AR processes, an interpolation

scheme is used between CB entries in order to achieve a greater ML score in eq. (2.16).

Nevertheless, the interpolation scheme may require an additional computation effort and,

more importantly, may result in an unstable AR process.

In [26], Srinivasan et al. further evolve the AR-based Source Separation scheme.

Instead of regarding the sources’ LPC, (θ1, θ2), and the excitation variances, (σ2
1, σ

2
2),

as parameters, the AR model components are defined as random variables. Thus, by

estimating the random vector Θ = [θ1, θ2, σ2
1, σ

2
2], one can also estimate the sources’ PSD

and, consequentially, perform source separation. The random vector estimation will be

performed using the MMSE estimation, and can be formulated as -

Θ̂ = E{Θ|x} =

∫

Θ

Θ · p(x|Θ)p(Θ)

p(x)
dΘ (2.19)
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Where x is the mixture observation and p(x|Θ) represents the likelihood that the ob-

servation has evolved from the parameter vector Θ. As before, the likelihood will be

modeled as a sum of two independent Gaussian AR processes (with zero mean). In order

to achieve a tractable estimator, it is assumed that the elements of the vector Θ are sta-

tistically independent, thus, p(Θ) = p(θ1)p(θ2)p(σ2
1)p(σ2

2). An additional simplification of

the estimator is obtained by approximating -

p(x|Θ) ≈ p(x|Θ) · δ(σ2
1 − σ2

1,ML)δ(σ2
2 − σ2

2,ML)

Where (σ2
1,ML, σ2

2,ML) are the excitation variances that were estimated within the AR-ML

source separation algorithm7. The simplified MMSE estimator can now be formulated as-

Θ̂ =

∫

θ1,θ2

Θ · p(x| θ1, θ2, σ2
1,ML, σ2

2,ML) · p(θ1)p(θ2)p(σ2
1,ML)p(σ2

2,ML)

p(x)
dθ1dθ2 (2.20)

At this stage, the CB representatives
({θ1

i }K1
i=1, {θ2

j}K2
j=1

)
will be used as discrete samples

of the above integration. Under further assumption that the CB entries are uniformly

distributed, the estimator can be described as -

Θ̂ =
1

K1K2

K1∑
i=1

K2∑
j=1

Θij ·
p(x| θ1

i , θ
2
j , σ

2
1,ML, σ2

2,ML) · p(σ2
1,ML)p(σ2

2,ML)

p(x)
(2.21)

Where Θij = [θ1
i , θ

2
j , σ

2
1, σ

2
2] represents the AR parameters of the current CB representa-

tives. By estimating Θ̂, it is straightforward to extract the estimated PSD of each source.

Hence, Wiener filtering can be applied to perform source separation.

It is well known that the optimal estimation of any function g(Θ) in the MMSE sense

is E {g(Θ)| x}. As a result, an immediate extension to the MMSE estimator in eq.(2.21)

can be easily derived. Since the Wiener filter is a function of Θ, it can be estimated

directly -

Ĥ(f) =
1

K1K2

K1∑
i=1

K2∑
j=1

H(f ; Θij) ·
p(x| θ1

i , θ
2
j , σ

2
1,ML, σ2

2,ML) · p(σ2
1,ML)p(σ2

2,ML)

p(x)
(2.22)

Where H(f ; Θij) represents the obtained Wiener filter with (θ1
i , θ

2
j ) as the CBs’ represen-

tatives.

The separation process can be summarized using three algorithmic stages:

7This simplification is justified in [26], by showing that p(x|Θ) is decaying rapidly from its maximal

value when deviating from the ML estimation of the excitation variances
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1. Off-line Learning Stage:

Similar to the AR-ML learning stage, with a minor change; since the MMSE es-

timator inherently performs linear interpolations between AR processes, the usage

of LPC might result in an unstable filter. Thus, the AR dictionary is described

using the Line Spectrum Frequency (LSF) coefficients. Further information about

the LSF and its characteristics can be found in [49].

2. Maximum Likelihood Calculation:

The excitation variances, (σ2
1,ML, σ2

2,ML), are estimated for each pair of CB repre-

sentatives, (θ1
i , θ

2
j ). The estimation is the same as in the AR-ML separation flow.

The Maximum Likelihood, p(x| θ1
i , θ

2
j , σ

2
1,ML, σ2

2,ML) is then calculated by using the

IS distortion measure, i.e. p(x|Θij) ∝ C · exp {−DIS(Px, Pij)}

3. Wiener Filtering:

Within the MMSE estimator scheme, there are two options for Wiener filtering:

• Θ Estimation - After estimating the optimal random vector Θ̂ by using eq.

(2.21), an estimation of the PSD of both sources, (P 1(f), P 2(f)) is available.

By denoting X(f, t) as the STFT of the mixture observation, the MMSE esti-

mator can be formulated as follows:

Ŝ1(f, t) =
P 1(f)

P 1(f) + P 2(f)
·X(f, t) (2.23)

Where Ŝ1(f, t) is the estimation of the 1st source in the STFT domain.

• Wiener Filter Estimation - By using eq. (2.22), the optimal Wiener Filter,

Ĥ(s), is estimated (as a function of Θ). The source separation can now be

formulated as:

Ŝ1(f, t) = Ĥ(f) ·X(f, t) (2.24)

Several extensions are also available here. For example, in reality, the spectral shape

of adjacent time frames in speech and audio signals are usually highly correlative. In the

previously mentioned AR-based source separation algorithms, each time frame is handled

independently. Srinivasan et al. have suggested in [26] to perform a memory-based
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estimation of the AR parameters. Instead of estimating Θ̂ according to eq. (2.19), the

estimation is also connected to the lastly estimated Θ̂n−1:

Θ̂n = E{Θ|x, Θ̂n−1} (2.25)

This connection between the current AR parameters and the previously chosen AR pa-

rameters will be modeled via a probability density p(Θn, Θn−1), which will be identified

in the learning step.

In summary, the AR-based source separation algorithms, much like their GMM coun-

terparts, attempts to describe a non-stationary signal by using a CB of AR processes. In

the AR-ML framework, at each time frame, different CB pairs as chosen to describe the

observed spectral envelope, while, in the AR-MMSE framework a linear combination of

the CB representatives is used.

2.6 NMF-based Separation Methods

In both GMM and AR based separation algorithms, the fundamental idea is to describe the

sources’ PSDs in each time frame using representatives from pre-defined dictionaries and

estimate their temporal varying weights. This point of view can be generalized: instead

of using only a single representative for each source, a time-varying, linear combination

of the sources can be used -



P1(f, t) =
∑K1

i=1 a1
i (t) · σ2

1,i(f)

P2(f, t) =
∑K2

j=1 a2
j(t) · σ2

2,j(f)
(2.26)

Where (P1(f, t) , P2(f, t)) are the power spectral densities of the sources,(
{a1

i (t)}K1

i=1 ,
{
a2

j(t)
}K2

j=1

)
are the gain factors at the time frame t0 and({

σ2
1,i(f)

}K1

i=1
,
{
σ2

2,j(f)
}K2

j=1

)
represent the two PSD CBs at the frequency bin, f0.

This formulation can also be expressed in a matrix form -




P1 = B1 ·G1

P2 = B2 ·G2

(2.27)

Where B1 , B2 are referred to as the basis matrices and contain the PSD CB elements

in their columns and G1 , G2 are referred to as the gain matrices and contain the time-

varying gain factors in their rows. Since the sources are statistically independent, the
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observed PSD matrix, Px , can be regarded as a sum of the sources’ PSD matrices. This

can also be formulated as -

Px = P1 + P2 = B ·G =
[
B1 B2

]
·


G1

G2


 (2.28)

Where B and G are the combined basis and gain matrices. When using this matrix

formulation to describe the CB-based single channel BSS problem, our goal can be in-

terpreted as identifying the gain matrix, G, given the pre-defined CB (basis) matrix, B,

and the observed mixture PSD matrix, Px . It can be easily seen that these matrices

have non-negative elements. Thus, an efficient decomposition or factorization method for

non-negative matrices can be quite handy at this stage.

Non-negative Matrix Factorization (NMF) represents a mathematical scheme that

allows for an efficient decomposition of a non-negative matrix, A ∈ Rn×m, (non-negativity:

each element of the matrix A is non-negative), into a multiplication of two non-negative

matrices, B ∈ Rn×r and G ∈ R r×m. In [30], Lee and Seung have first introduced the

NMF concept using two cost functions for the matrix approximation:

• Frobenious norm -

d(P, BG) = ‖P −BG‖2
F =

∑
i,j

|Pi,j − (BG)i,j|2 (2.29)

• KL Divergence -

d(P, BG) =
∑
i,j

(
Pi,j · log

(
Pi,j

(BG)i,j

)
− Pi,j + (BG)i,j

)
(2.30)

While the Frobenious norm (or L2 minimization) is quite popular and straightforward,

in our case, when dealing with PSD of audio signals, it appears that the KL divergence

cost function is superior. We will also demonstrate in section 2.7 that there is a similarity

between the Itakura-Saito (IS) distortion measure and the KL divergence cost function.

The matrix decomposition is performed using a multiplicative update rule and will always

converge to a local minimum of the cost function. This update rule can also be interpreted

as a gradient descent algorithm with optimally chosen step size (see [30]). The NMF

algorithm multiplicative update rule is -
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• Frobenious norm - 



B = B ¯
(

PGT

BGGT

)

G = G¯
(

BT P
BT BG

) (2.31)

• KL Divergence - 



B = B ¯
(

P
BG

·GT

1·GT

)

G = G¯
(

BT · P
BG

BT ·1

) (2.32)

Where the division sign represent element-wise division and ¯ represents element-wise

multiplication. It is interesting to note, at this stage, that a simple instance of the NMF

algorithm can be found in the GSMM-based single channel BSS algorithm. The gain

factors estimation of a single pair (see eq. (2.8)) of representatives from the sources’

CBs is performed using the NMF multiplicative update rule with the KL divergence cost

function. In this specific case each basis matrix contains only one representative per

source.

By using the NMF scheme as is, a simple and naive single channel BSS algorithm

can be devised. Given the observed PSD of the mixture, Px , one can apply the NMF

framework and calculate the basis and gain matrices. This is not a full solution though,

since it is still unknown if a specific basis vector is part of the 1st or 2nd CB. This simple

separation model is further described in [31] and is denoted as un-directed NMF. I.e., the

NMF decomposition is not using any prior information for the actual separation. Thus,

in order to complete the separation process, human interaction or some kind of heuristic

will be needed in order to determine which source has originated each basis vector. An

opposing approach, denoted as directed NMF in [31], states that in order to properly

separate the mixture, one should pre-define the basis matrices of each source. Thus, the

single channel BSS algorithm should have the following stages:

1. Off-line learning stage:

In this stage, each source’s training set is used in order to estimate the basis matrix

of the source. The process includes the construction of the PSD matrix of each

source, P1, P2, and using the NMF scheme for decomposing it to the gain and basis

matrices (as in eq. (2.28)). Since we are not interested in temporal varying gains,

we will only use the basis matrices, B1, B2, as the pre-defined CBs.
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2. Gain Matrix estimation:

At this online stage, the observed PSD of the mixture is used in order to construct

the mixture PSD matrix, Px. Then, an altered version of the NMF algorithm is

used for the matrix decomposition. Instead of updating both the basis and the gain

matrices, only the gain matrix is updated while the basis matrix remains constant

and contains the values of the pre-defined CBs, B =
[
B1 B2

]
.

3. Source Separation:

After the convergence of the NMF process, the estimated PSD of the two sources

can be calculated based on eq. (2.27) -




P1(f, t) =
∑K1

i=1 bi
1(f) · gi

1(t)

P2(f, t) =
∑K2

j=1 bj
2(f) · gj

2(t)
(2.33)

Where, bi represents the ith column of the basis matrix and gi represents the ith row

of the gain matrix. Using this notation, it is possible to see that the NMF performs

a separation between the stationary CB (in the basis matrix) and the temporal

varying gain factors (in the gain matrix). For each time-frequency bin in the STFT

domain, one can use the Wiener filtering for the actual source separation -

Ŝ1(f, t) =
P1(f, t)

Px(f, t)
·X(f, t) (2.34)

Even though the NMF-based single channel BSS algorithm provides sufficient sepa-

ration results in several specific scenarios, additional priors can be used when trying to

separate audio signals. In [32], Smaragdis suggested a change in the NMF formulation

in order to incorporate dependencies between adjacent time frames. If, for example, a

regularly repeating timely pattern is observed in the signal’s PSD, it will be represented

in the regular NMF framework by using several arbitrary representatives from the CB.

It might be more efficient to use NMF CB that spans several time frames of the signal’s

PSD. Following the above argument, Smaragdis introduced a generalization for the NMF

approach, the Convolutive NMF. Instead of describing a basis representative using a spe-

cific row bi in B, each CB representative will be describe using a time varying row, b i(τ).

This way, a time dependent basis matrix can be defined, B(τ) , τ ∈ [0, . . . , T − 1], where

T represents the time depth of each CB element. Accordingly, instead of using a simple
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gain matrix, G, the Convolutive NMF uses shifted versions of the gain matrix for each

time instance of the basis matrix. This can be formulated as -

P =
T−1∑
τ=0

B(τ) · Shiftτ (G) (2.35)

Where the operation Shiftτ (G) is defined by -

[Shiftτ (G)]i,j =





0 j ≤ τ

Gi,j−τ j > τ

One can observe that the shift operation is similar to convolution. i.e., each time segment,

b i(τ), of B(τ) is multiplied with the same gain factor, but is affecting the mixture result

at a different time frame.

Due to the linear structure of the Convolutive NMF, the factorization is a simple

extension of the regular NMF algorithm. Instead of updating a single basis matrix, the

Convolutive NMF update rule must update T instances of the basis matrix, thus, solving

T factorization problems instantaneously. The usage of the Convolutive NMF scheme for

single channel BSS is quite similar to the simple NMF-based single channel BSS. The

separation algorithm should have the following stages:

1. Off-line learning stage:

As in the NMF-based off-line stage, a training set of each source is used to construct

the PSD matrices of the sources, P1, P2. A Convolutive NMF scheme is used in

order to decompose the PSD matrices into the Convolutive NMF basis matrices,

B1(τ), B2(τ), and the shifted gain matrices (via the KL divergence cost function).

B1(τ) and B2(τ) , τ ∈ [0, . . . , T − 1] will be used in the online separation flow.

2. Gain Matrix Estimation:

At this online stage, the basis matrices of the two sources are used to construct

the unified basis matrix: B(τ) =
[
B1(τ) B2(τ)

]
, τ ∈ [0, . . . , T − 1]. The observed

mixture PSD matrix, Px, is then decomposed using an altered version of Convolutive

NMF scheme. Since we are only interested in estimating the shifted gain matrix,

the basis matrix will remain unchanged and the multiplicative update rule will only

be applied to the gain matrix, G =


G1

G2


.
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3. Source Separation:

After the convergence of the Convolutive NMF process, the estimated PSD of the

two sources can be estimated using the following formulation -




P1 =
∑T−1

τ=0 B1(τ) · Shiftτ (G1)

P2 =
∑T−1

τ=0 B2(τ) · Shiftτ (G2)
(2.36)

At this stage, since the PSD matrices of each source were estimated, the actual

source separation can be applied in numerous ways. For example, using the phase

of the observed mixture -



Ŝ1(f, t) =
√

P1(f, t) · ](X(f, t))

Ŝ2(f, t) =
√

P2(f, t) · ](X(f, t))
(2.37)

Where ](X(f, t)) represents the phase of the mixture STFT value in a specific

time-frequency bin. A simple Wiener filtering can also be used at this stage (see eq.

(2.34)).

Even though the above algorithm uses the time correspondences prior between adja-

cent time frames within the NMF flow, it is not foolproof. The algorithm tries to recognize

CB entries within the mixture that span over T time frames. If, however, the source in-

stance will slightly deviate from the pre-defined time correspondences (as appeared in

the CB), the source, as a whole, might not be identified correctly, thus, hindering the

separation performance.

Additional effort to incorporate the correlation between adjacent time frames into the

NMF framework was made by Virtanen in [33]. This was achieved by introducing a time

continuity constraint to the NMF cost function -

c(P, BG) = cr(P, BG) + α · ct(G) (2.38)

where cr = d(P, BG) represents the reconstruction error (the KL divergence version,

as appears in eq. (2.30)), ct(G) represents the time continuity constraint on the gain

matrix, and α represents the trade-off between favoring exact reconstruction (small α)

and favoring continuity of the gain factors (bigger α). The Continuity constraint, ct(G),

can be expressed using -

ct(G) =
K∑

i=1

∑
t

(
ĝi(t)− ĝi(t− 1)

)2
(2.39)
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Where K represents the number of basis vectors, ĝi(t) represents the ith row of the gain

matrix after normalization by the ith row gain variance. One can easily observe that this

cost function will achieve smaller values when the gain factors are slowly varying in time.

Virtanen [33] also proposed an alteration for regular NMF multiplicative update rule

in order to minimize the new joint cost function. Nevertheless, unlike the regular NMF

multiplicative update rule, which assures convergence to local minima of the cost function,

in this case, the multiplicative iterations may result in higher value of the joint cost

function. The author stated, however, that in his experiments, this phenomenon did not

occur. The separation scheme that is based on this alteration of the NMF algorithm

does not include an off-line stage for identifying the CB representatives for each source.

Instead, each of the estimated basis vectors, {bi}K
i=1, is compared against each of the

original sources. According to the similarity between the basis vector and the source

instances, the basis vectors can be divided into two groups, each defines the CB of the

specific source. This is, obviously, not a full solution for the problem of single channel

source separation; however, it may be a step in the direction of a NMF-based, single

channel BSS algorithm with time-continuity prior.

A different type of prior information that can be embedded into the NMF formulation

is the sparsity requirement. The sparseness attribute in a dictionary-based representation

schemes, simply states that only a few CB representatives are required in order to describe

the observed data. In the NMF flow, sparsity can be measured by observing the number

of non-zero gain factor in a given time frame (or gain matrix column). This information

will determine the number of active CB representatives in the given time frame.8

Several single channel BSS algorithms have suggested using the sparsity constraint

within the NMF algorithm framework. In [33], aside from using the time-continuity prior,

the author also introduced a sparsity constraint to the NMF cost function, which is a

direct extension to the formulation in eq. (2.38) -

c(P, BG) = cr(P, BG) + α · ct(G) + β · cs(G) (2.40)

Where cs(G) represents the sparseness cost function and β represents the Lagrange mul-

8We can consider the GSMM-MAP and the AR-ML as two examples of separation algorithm that

incorporate extreme sparsity requirement. In both cases, only a single representative from each source’s

CB is allowed.
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tiplier of the sparseness constraint. Solutions with bigger β will tend to sparsity, while

those with smaller β, will ignore the sparseness requirement. The sparseness cost function,

cs(G), is using the L1 norm on each of the normalized rows of the gain matrix, {ĝi}K
i=1 ,

and can be expressed as -

cs(G) =
K∑

i=1

∑
t

∣∣ĝi(t)
∣∣ (2.41)

It is worthwhile to mention, that according to the author, the experimental setup results

gave their best separation results when β = 0 and α = 100, i.e., when the sparsity

constraint was disregarded. This may also hint that in some scenarios and on specific

types of data, a given prior might not necessarily be helpful for achieving good separation

results.

An additional example for using sparsity constraint within the NMF framework can be

found in the evolving field of Sparse NMF (SMNF) [52]. This approach offers an efficient

way for clustering non-negative data blindly into an over-complete dictionary that can

sparsely represent the data (See [53] for a comparison between SNMF, NMF and K-means

clustering algorithms). In the context of single channel BSS, Schmidt in [34], has proposed

to use the SNMF framework for the factorization of the mixture PSD matrix into gain

and basis matrices. The SNMF framework in this case will favor decompositions with

sparser gain matrix. The SNMF cost function is a slight alteration of the L2-based NMF

cost function (as appears in eq. (2.29)) and is formalized using -

C(P, BG) = ‖P −BG‖2
F + λ ·

K∑
i=1

∑
t

Gi,t (2.42)

s.t B, G ≥ 0

As in eq. (2.40), this cost function contains the reconstruction penalty (L2 norm), the

Lagrange multiplier of the sparsity constraint and the sparsity cost function (L1 norm

on the elements of the gain matrix). The innovation in the SNMF framework is that the

minimization is still performed using a multiplicative update rule and that the convergence

to a local minimum is assured. The SNMF algorithm multiplicative update rule is -





Bi = Bi ¯
( ∑

i Gi,j ·[Pi+(RT
i Bi)Bi]∑

i Gi,j ·[Ri+(P T
i Bi)Bi]

)

Gi,j = Gi,j ¯
(

P T
i Bi

RT
i Bi+λ

) (2.43)
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Where Xi represents the ith column of the matrix X, Bi = Bi

‖Bi‖ is the normalization of Bi

(using any required norm) and Ri =
∑

i Gi,j · Bi represents the factorization when using

only a single element from the normalized basis matrix.

The single channel BSS algorithm is performed similarly to the regular NMF-based

separation algorithm. First, a training set of each source is used in an off-line stage in order

to construct the basis matrix. Second, the observed mixture PSD matrix is decomposed,

using the SNMF framework, into the given basis matrix and the estimated gain matrix.

Third, the PSD of each source is constructed using the sources’ estimated gains and basis

matrices. The actual separation can be performed in various ways. For example, using

Wiener filtering (see eq. (2.34)) or by multiplying each estimated magnitude with the

mixture’s phase (see eq. (2.37)). Following the SNMF usage model, several additional

extensions were suggested for enhancing the separation results. For example, in [34], the

authors have suggested to operate the SNMF scheme on the magnitude values of the

mel-scale spectrogram representation and not directly on the PSD values of the mixture.

Additional extension can be found in [35], where the SNMF spectral separation results are

not directly used for the actual source separation. Instead, the estimated gain matrix is

used as the observed feature in a post-processing linear estimation phase. The extension

can also be interpreted from a different point of view. The authors introduce a linear

regression model for separating a mixture of audio signals. Instead of using the mixture’s

STFT content as the observed input for the regression process, the estimated gain matrix

of the SNMF scheme is used as the observed feature. The suggested extension can be

powerful since it may introduce further constraints and priors into the regression process

while using a sparse representation of the observed mixture. This may help adjust the

separation scheme according to the audio signals’ characteristics.

Apart from sparsity and continuity, additional priors were suggested for improving

the NMF-based separation performance. Several approaches for source separation have

utilized CASA concepts for perceptually enhanced separation results. Virtanen, in [36],

presents a perceptually weighted NMF algorithm for single channel BSS. The altered NMF

scheme assigns a weight coefficient for each critical band in each time frame in order to

model the loudness perception in the human auditory system. The altered cost function,
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which is based on the KL divergence, can be formulated as -

d(P,BG; W ) = d(W ¯ P, W ¯BG) (2.44)

Where W is the CASA-driven weight matrix and ¯ represents element-wise multiplica-

tion. According to the experimental study, this approach produced superior perceptual

separation in comparison to other NMF-based algorithm.

Kirbiz et al. [37] suggest a different way for introducing CASA knowledge into NMF-

based separation algorithms. Instead of actual alteration of the NMF cost function, a pre-

processing manipulation of the observed signal is performed. During the pre-processing

stage, information that is not critical for human hearing sensation is removed while impor-

tant parts are kept intact. In addition, the specific loudness sensation (sone) is calculated

per frequency band and used for the separation process. This approach, as well, has

reported better separation result, conceptually, in comparison with conventional NMF.

Throughout the derivation of the NMF-based source separation algorithm, one of the

fundamental assumptions was that the observed PSD is simply an addition of the two

sources’ PSDs. Indeed, this assumption is statistically correct if, of example, the signals

are modeled as independent Gaussian processes. Nevertheless, in real audio signals this

statistical assumption may not always hold. For example, if two signals exist in the same

time-frequency bin, the spectral additivity will hold only if the signals will have the same

phase. Following this argument [38, 39], instead of assuming additivity in the spectrum

domain, additivity is required in the complex domain. Thus, instead of describing the

PSD of a signal using a gain and basis matrix, as in eq. (2.27), the STFT complex values

can now be described using -

S(f, t) =
K∑

k=1

Bf,k ·Gk,t · Φf,t,k (2.45)

Where B ·G = |S(f, t)| represents the magnitude of the signal (B and G are non-negative

matrices) and Φf,t,k is the time-frequency phase matrix which is define for each basis entry.

The actual matrix decomposition, denoted as Complex NMF, is conducted by only using

the magnitude information according to the following cost function -

C(X|G,B, Φ) =
∑

f,t

∣∣∣∣∣Xf,t −
K∑

k=1

Bf,k ·Gk,t · Φf,t,k

∣∣∣∣∣

2

+ λ ·
∑

k,t

|Gk,t| (2.46)
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This cost function is similar to the L2 norm with sparsity constraints. In [38], an update

rule for the matrices decomposition is developed and it is shown that the basic NMF

scheme is a private case in the complex NMF framework. A later work, in [39], further

suggests an enhanced learning method for single channel BSS algorithm which is based

on complex NMF.

One of the most intriguing attempts to enhance the separation performance of the

NMF-based separation algorithms was suggested by Févotte et al. [40]. The authors

introduced the IS distortion measure into the matrix factorization framework and denoted

the combination as IS-NMF (in section 2.7 the connection between the NMF framework

and the IS distortion measure is further discussed). As previously mentioned, the IS

distortion measure has evolved from the field of speech enhancement is widely popular as

a distance measure between two audio spectral shapes. Such an integration between the

IS distortion measure with the NMF scheme can combine a cost function that is more

suitable for spectral shapes with an efficient update rule. Indeed, Févotte et al. have

proposed an altered multiplicative update rule for the IS-NMF scheme. Nevertheless,

unlike the basic NMF multiplicative update rule [30], the IS-NMF multiplicative update

rule convergence properties [40] are without proof. Furthermore, the authors show that

each of the cost functions that were incorporated within the NMF framework (namely,

Frobenius Norm, KL divergence and the IS distortion measure) could also have originated

from an estimation scheme with a specific probability distribution. For example, the

Frobenius norm NMF can evolve from a ML estimator of the gain and basis matrices

when additive, Gaussian, i.i.d. noise characteristics are assumed. The KL-NMF scheme

can similarly evolve from Poisson noise distribution and the IS-NMF can evolve from a

ML estimator when multiplicative noise with Gamma distribution is present. In addition,

as in [54], continuity and sparsity constraints can also be implicitly introduce through

priors on the probability distribution of the gain matrix.

In conclusion, NMF-based single channel BSS algorithms can be considered as a nat-

ural generalization of the GSMM-based and AR-based separation algorithms. Instead of

allowing only one representative from each source’s CB to describe the observed mixture,

the NMF framework proposes a non-negative linear combination of the CB representa-

tives for describing the observed mixture. In order to better describe audio signals and
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to achieve better separation results, several types of extensions to the NMF framework

are suggested. Among them are the additional priors of time-continuity, sparsity, and

conceptual meaningfulness. In the following sections, we will analyze the connection be-

tween the NMF, GMM and AR based single channel BSS methods and will suggest several

extensions to the existing algorithms.

2.7 Discussion

In this section, we concentrate on three baseline CB-based algorithms in the field of single

channel BSS: The GSMM [13], AR [25] and the NMF [30] based separation algorithm.

Following the fundamental description of each of the algorithms (As appears in sections

2.4, 2.5 and 2.6 respectively), by investigating some of their attributes, several interesting

similarities between the separation concepts can be found.

Each of the separation algorithms has evolved from a different perspective on the

problem of source separation. The AR-based source separation has evolved from speech

enhancement techniques, in which, an AR model is used to describe the speech spectral

shape. In the GMM-based separation scheme, a probabilistic approach is applied. In-

stead of estimating a general probability density of each source, a GMM is used as an

approximated, yet much simpler, distribution function. This GMM representation can

also be interpreted as a CB of independent and stationary PSD in the STFT domain.

The NMF-based separation approach has actually evolved from practical needs for non-

negative matrix decomposition and clustering. The factorization itself can be regarded

as an attempt to describe the mixture’s PSD using a linear combination of the CBs

representatives’ PSDs.

Notations

In order to observe similarities between the different algorithms, we will use a more general

set of symbols for the formulation of the single channel BSS problem:

• The CB representatives will be denoted using {ϕi
1(f)}K1

i=1 and
{
ϕj

2(f)
}K2

j=1
. Where

ϕi
1(f) represents the ith CB entry of the 1st source, ϕj

2(f) represents the jth CB entry

of the 2nd source and (K1, K2) stand for the sizes of the 1st and 2nd CBs respectively.
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• The non-negative, time-varying gain factors of the CB representatives will be de-

noted using {ai
1(t)}K1

i=1 and
{
aj

2(t)
}K2

j=1
. Where ai

1(f) is the gain factor of ϕi
1(f) and

aj
2(f) is the gain factor of ϕj

2(f).

• The PSDs of the sources will be denoted using P1(f, t) and P2(f, t). By using a

linear combination model, the sources’ PSDs can be defined as -




P1(f, t) =
∑K1

i=1 ai
1(t) · ϕi

1(f)

P2(f, t) =
∑K2

j=1 aj
2(t) · ϕj

2(f)
(2.47)

Obviously, since the GSMM and AR models allow only a single pair of representa-

tives to participate in the separation algorithm, only a single member of {ai
1(t)}K1

i=1

and of
{
aj

2(t)
}K2

j=1
will be non-zero. Additionally, we will denote the sum of the two

PSDs as P1+2(f, t) = P1(f, t) + P2(f, t).

• The observed mixture PSD will be denoted as Px(f, t). Eventually, the objective

of all the separation algorithms is to estimate P1(f, t) and P2(f, t) according to the

observed mixture, i.e., Px(f, t) ≈ P1+2(f, t).

Algorithmic Flow

Despite the different origin of the separation techniques, all have similar conceptual algo-

rithmic stages:

1. Off-line learning stage:

In all three separation algorithms, a pre-processing stage is applied, in which, some

kind of clustering scheme is used on a training data in order to define the CB

representatives, {ϕi
1(f)}K1

i=1 and
{
ϕj

2(f)
}K2

j=1
. The GSMM approach [13] is using EM

in order to estimate the sources’ GMM parameters. The AR [25] approach is using

the Generalized Lloyd algorithm for clustering the LPC or LSF Auto-Regressive

coefficients. Even in the NMF-based separation scheme, a preliminary NMF flow is

used on the training data in order to estimate the basis matrix, which holds the CB

representatives in its columns.

2. Gain Estimation:

At this stage, given the observed mixture, an estimation scheme is applied in order



CHAPTER 2. SINGLE CHANNEL SOURCE SEPARATION METHODS 46

to calculate the gain factor for each CB representative. Within the GSMM flow,

this estimation step is performed for each pair of representatives (one from each

source’s CB), using a Maximum Likelihood approach (see eq. (2.8)). The AR-based

separation algorithm estimates the gain factors (excitation variances) for each pair of

representatives as well. This time, the gain factors are defined using the IS distortion

function (see eq. (2.17)). The NMF-based gain estimation stage is rather different

from the GSMM and AR-based gain estimation stage. Instead of considering only a

given pair of representatives, the NMF flow estimates gains for the entire set of CB

representatives. The gain estimation is performed by applying the KL divergence

version of the NMF’s multiplicative update rule on the decomposed gain matrix (see

eq. (2.32)).

3. Source Separation:

Following the gain estimation stage, it is now possible to estimate the PSD of

the sources and use them for the actual source separation. In the GSMM-based

separation framework9, the chosen representative pair is selected for each time frame

according to its posterior probability for describing the mixture (see eq. (2.9)). In

the AR-based separation framework10, for each time frame, the active pair is chosen

according to the minimization of the IS distortion measure between its estimated

PSD and the observed mixture PSD.

If we will denote the active pair with (i∗, j∗), in the GSMM and AR-based separation,

the sources’ PSDs can be described using -




P1(f, t) = ai∗
1 (t) · ϕi∗

1 (f)

P2(f, t) = aj∗
2 (t) · ϕj∗

2 (f)
(2.48)

When addressing the NMF-based separation framework, the estimated gain matrix

can be used in describing the sources’ PSDs (As in eq. (2.28) and (2.47)). Following

the estimation of the sources PSDs, we can use any STFT-based separation algo-

rithm for extracting the estimated sources. For example: Wiener filtering, Spectral

subtraction, binary masking, etc.

9The mentioned source separation flow is more related to the GSMM-MAP criterion ,though the

GSMM-MMSE criterion is simply a weighted mean of the separation results using all the possible pairs
10The mentioned source separation flow is more related to the AR-ML framework



CHAPTER 2. SINGLE CHANNEL SOURCE SEPARATION METHODS 47

Cost Function

At a first glance, it seems that each of the mentioned algorithms is using a different cost

function for the source separation frameworks:

• The GSMM-based separation algorithm is using the posterior probability in order

to identify the active pair, (i∗, j∗). Using eq. (2.5) and (2.9) we can be formalized

the posterior probability as -

p(θi
1, θ

j
2|x) u p(x| θi

1, θ
j
2, â

i
1, â

j
2) · Pr (θ1

i ) · Pr (θ2
j ) (2.49)

Where
(
θi
1, θ

j
2

)
represent the state (or representative) of each source’s GMM and

(
âi

1, â
j
2

)
are the estimated gain factors. Since the mixture is a sum of two indepen-

dent Gaussian vectors, with diagonal covariance matrices in the transform domain,

the ML expression, p(x| θi
1, θ

j
2, â

i
1, â

j
2), can be explicitly described using the formula-

tion -

p(x| θi
1, θ

j
2, â

i
1, â

j
2) = (2π)−

F
2

F−1∏

f=0

[P1+2(f, t)]−
1
2 · exp

{
− Px(f, t)

2 · P1+2(f, t)

}
(2.50)

• The AR-based separation algorithm is using the IS distortion measure in order to

identify the active pairs and to estimate the gain factors in each time frame -

DIS (Px(f, t), P1+2(f, t)) =
1

F

F−1∑

f=0

[
Px(f, t)

P1+2(f, t)
− log

(
Px(f, t)

P1+2(f, t)

)
− 1

]
(2.51)

• The NMF-based separation algorithm is using the KL divergence cost function (see

eq. (2.30)) in order to decompose the observed mixture’s PSD matrix into a multi-

plication of the gain and basis functions. We recall that -

BG = B1G1 + B2G2 = P1 + P2 = P1+2

Due to the separable nature of the KL divergence, each column (or time frame)

can be analyzed separately, thus, the cost function for a given time frame can be

formulated as -

d(t) =
F−1∑

f=0

[
Px(f, t) · log

(
Px(f, t)

P1+2(f, t)

)
− (Px(f, t)− P1+2(f, t))

]
(2.52)

Where d(P, BG) =
∑

t d(t).
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After further describing each of the cost functions, we will show that there is an

interesting similarity between them. Let us start with the GSMM cost function (as

appears in eq. (2.49)). Since our goal is to maximize the ML criterion, we can equivalently

maximize the Log-likelihood function -

argmax(i,j)

{
p(x| θi

1, θ
j
2, â

i
1, â

j
2)

}

= argmax(i,j)

{
log

[
p(x| θi

1, θ
j
2, â

i
1, â

j
2)

]}

= argmax(i,j)

{
C +

1

2

F−1∑

f=0

[
log

(
1

P1+2(f, t)

)
− Px(f, t)

P1+2(f, t)

]}

= argmax(i,j)

{
F−1∑

f=0

[
− Px(f, t)

P1+2(f, t)
+ log

(
Px(f, t)

P1+2(f, t)

)
+ 1

]}

= argmin(i,j)

{
1

F

F−1∑

f=0

[
Px(f, t)

P1+2(f, t)
− log

(
Px(f, t)

P1+2(f, t)

)
− 1

]}

One can easily observe that the last formulation is identical to the IS distortion function.

This result can be formalized as -

argmax(i,j)

{
log

[
p(x| θi

1, θ
j
2, â

i
1, â

j
2)

]}
= argmin(i,j) {DIS (Px(f, t), P1+2(f, t))} (2.53)

Thus, maximizing the log-likelihood is equivalent to minimizing the IS distortion measure

between the observed spectral shape, Px(f, t), and the spectral shape that evolves from

the chosen pair and their estimated gain factors, P1+2(f, t). In addition to the mentioned

interesting connection, a similar relation also exists between the KL divergence and the

IS distortion measure. If we will observe the KL divergence cost function for a given time

frame, then -

d(t) =
F−1∑

f=0

[
Px(f, t) · log

(
Px(f, t)

P1+2(f, t)

)
− (Px(f, t)− P1+2(f, t))

]

=
F−1∑

f=0

Px(f, t)

[
P1+2(f, t)

Px(f, t)
− log

(
P1+2(f, t)

Px(f, t)

)
− 1

]

Using the above formulation, it is simple to identify the similarity to the IS distortion

function, DIS (P1+2(f, t), Px(f, t)). It seems that the KL divergence cost function will

penalize more aggressively in frequency bins with more observation energy, while the IS

distortion measure treats all frequency bins as identical. This attribute will be further
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discussed in section 3, in which we develop our proposed extensions for the baseline

separation algorithms.

2.8 Summary

In this chapter, a survey of single-channel BSS methods was presented, with a special focus

on CB-based source separation algorithms, such as the GMM/AR/NMF-based separation

frameworks.

In addition to the literature survey, a comparison between the three baseline CB-based

algorithms (namely, the GMM/AR/NMF-based separation schemes) was performed. De-

spite the fact that these CB-based separation algorithm have evolved from different fields,

several similarities can be observed while comparing the separation algorithms. For ex-

ample, all the baseline algorithms are performing the separation in the STFT domain and

use three conceptually identical stages for source separation: First, the CB representative

are trained according to an off-line learning stage. Second, a gain factor is estimated for

each CB representative according to the observed mixture. Third, the active representa-

tives are chosen and take part in the actual source estimation phase. Further similarities

between the three baseline algorithms are also confronted. Following a comparison be-

tween the separation cost function of each algorithm, we have shown that the GMM and

the AR cost function are practically identical. Both algorithms are using the IS distortion

measure in order to determine the match between the observed PSD and the PSD of the

estimated sources. We also show a strong resemblance between the NMF’s KL divergence

cost function and the IS distortion measure.

As a closing remark, we have seen that the IS distortion measure treats each time-

frequency bin identically without regard to the observation energy in that bin and regard-

less of the typical energy distribution of the sources at hand. In the following chapter,

we further develop this direction and propose a generalization for the GMM/AR baseline

source separation algorithms that also considers the observed energy distribution when

comparing between two PSDs.



Chapter 3

GMM/AR Cost Function

Generalization

3.1 Introduction

Following the survey of methods for single channel BSS in section 2, we will now con-

centrate on several of the shortcomings of the NMF, AR and GMM-based separation

algorithms. These weak points will lead us, throughout this chapter, to two proposed

CB-based separation algorithms. These algorithms will be presented as a generalization

for the baseline single channel BSS cost function.

First, while comparing the GMM/AR/NMF baseline separation algorithm in section

2.7, we have already discovered that the IS distortion measure is used for matching be-

tween the observed PSD and the sources’ estimated PSD. Another observation regarding

the IS distortion measure was that it treats every time-frequency bin identically when cal-

culating the distance between two PSDs. In section 3.2 we suggest a different approach;

we follow the basic assumption that time-frequency bins with adequate spectral content

should weight more than time-frequency bins with negligible energy. Following this ar-

gument, an alteration to the separation cost function is introduced and a new separation

framework evolves accordingly.

Second, following the comparison between the source separation cost functions in sec-

tion 2.7, we identify an additional weak point in the separation framework. It seems that

aside from the statistical independence assumption of the sources, there is no additional

50
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attention to the actual goal of the algorithm - to successfully estimate the underlying

sources from their mixture. We therefore introduce an additional requirement into the

separation cost function. Instead of only perusing a good match between the observed

PSD and the sources’ estimated PSD, we also require that the sources’ estimated PSDs

will be as ’distant’ as possible. Following this extension, a new separation framework is

evolved and presented herein.

3.2 Frequency-Dependent Cost Function

In this section, we introduce a generalization of the GSMM and AR based single channel

BSS algorithms. Within the AR-based separation framework, the Itakura-Saito distortion

function is used for estimating the gain factors (or excitation variances) for each possible

pair of CB representatives. It is further used, in the AR-ML scheme, to define the active

pair among all possible pairs. This is done by minimizing the IS-distortion function

between the observed mixture PSD and the PSD that evolved from the selected pair with

its estimated gain factors. This entire framework can be summarized as in eq. (2.17) -

(i∗, j∗) = argmin(i,j)

(
minai

1(t),aj
2(t)

{
DIS

(
Px(f, t), ai

1(t) · ϕi
1(f) + aj

2(t) · ϕj
2(f)

)})
(3.1)

Where the IS distortion measure is define using -

DIS (Px(f, t), P1+2(f, t)) =
1

F

F−1∑

f=0

[
Px(f, t)

P1+2(f, t)
− log

(
Px(f, t)

P1+2(f, t)

)
− 1

]

By observing the structure of the IS distortion measure, it can be deduced that every

frequency bin is treated identically. However, since our goal is to separate audio signals,

it is quite apparent that frequency bins with high magnitude or spectrogram values are

more important than frequency bins with close-to-zero magnitude. Furthermore, in many

cases, the actual separation stage is performed using the Wiener filtering scheme -

Ŝ1(f, t) =
P1(f, t)

Px(f, t)
·X(f, t) (3.2)

Hence, in areas where ‖X(f, t)‖ ≈ 0, the estimation of P1(f, t) is not quite relevant, and

‖Ŝ1(f, t)‖ ≈ 0 as well. The actual values of the estimated P1(f, t) are only relevant when

the mixture’s PSD energy is high enough. For example, if the mixture’s PSD gets non-zero
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values only in a specific frequency bin, f0, it is only important that the evolved mixture

P1+2(f, t) will be similar to the observed PSD, Px(f, t) in that specific frequency bin.

Other frequency bins can be disregarded, since they do not affect the actual separation

results. This understanding can be embedded within the single channel BSS cost function

by giving each frequency bin a different weight. i.e., the similarity between P1+2(f, t) and

Px(f, t) is more important in some frequency bins.

Therefore, a generalized version of the IS distortion measure will be suggested. The

generalized version will introduce a different weight for each frequency bin -

D̃IS (Px(f, t), P1+2(f, t)) =
1

F

F−1∑

f=0

λf

[
Px(f, t)

P1+2(f, t)
− log

(
Px(f, t)

P1+2(f, t)

)
− 1

]
(3.3)

Where {λf}F−1
f=0 are the frequency dependent weights. Naturally, when λf = 1,∀f =

[0, . . . , F − 1], the altered cost function will coincide with the IS distortion measure. In

order to estimate the gain factors for each pair of representatives from the sources’ CBs,

we will seek for a minimization of the altered IS cost function -

C(ai
1, a

j
2) = D̃IS

(
Px(f, t), Px(f, t), ai

1(t) · ϕi
1(f) + aj

2(t) · ϕj
2(f)

)
(3.4)

This may be achieved by demanding that the derivative of C(ai
1, a

j
2) with respect to ai

1

and aj
2 will be zero. Thus, the derivative of C(ai

1, a
j
2) with respect to ai

1 is -

∂C(ai
1, a

j
2)

∂ai
1

=
1

F

F−1∑

f=0

[
λfϕ

i
1(f)

P1+2(f, t)
· (P1+2(f, t)− Px(f, t))

P1+2(f, t)

]
(3.5)

Symmetrically, the derivative of C(ai
1, a

j
2) with respect to aj

2 is -

∂C(ai
1, a

j
2)

∂aj
2

=
1

F

F−1∑

f=0

[
λfϕ

j
2(f)

P1+2(f, t)
· (P1+2(f, t)− Px(f, t))

P1+2(f, t)

]
(3.6)

By using gradient descent algorithm we can reach a local minimum of C(ai
1, a

j
2). Thus,

the update rule of the gain factors can be formulated as -




[ai
1(t)]n+1 = [ai

1(t)]n − µ1 · 1
F

∑F−1
f=0

[
λf ϕi

1(f)

P1+2(f,t)
· (P1+2(f,t)−Px(f,t))

P1+2(f,t)

]

[
aj

2(t)
]
n+1

=
[
aj

2(t)
]
n
− µ2 · 1

F

∑F−1
f=0

[
λf ϕj

2(f)

P1+2(f,t)
· (P1+2(f,t)−Px(f,t))

P1+2(f,t)

] (3.7)

Where [ai
1(t)]n represents the value of ai

1(t) at the nth iteration of the gradient descent

algorithm and (µ1, µ2), represent the step size of the gradient descent algorithm for each

of the gain factors.
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A known weakness of the gradient descent algorithm is its dependency on the chosen

step size. If the step size is too small, convergence to the local minimum of the cost

function may be slow. On the contrary, if the step size is too big, we may miss the local

minima entirely. In [13], a multiplicative update rule is defined instead of the additive

update rule of the gradient descent algorithm. The multiplicative update rule is based on

the NMF concept [30] when only two representatives are used for the description of the

observed mixture PSD. The multiplicative update rule converges to a local minimum of

the cost function and at the same time, keeps the non-negativity requirement of the gain

factors intact. If we define ϕ̂i
1(f) = λfϕ

i
1(f) and ϕ̂j

2(f) = λfϕ
j
2(f), we are back to the

genuine GSMM cost function and can use the same multiplicative update rule as appears

in [13] - 



[ai
1(t)]n+1 = [ai

1(t)]n ·
∑F−1

f=0

[
ϕ̂i
1(f)

P1+2(f,t)
· Px(f,t)
P1+2(f,t)

]

∑F−1
f=0

[
ϕ̂i
1(f)

P1+2(f,t)

]

[
aj

2(t)
]
n+1

=
[
aj

2(t)
]
n
·

∑F−1
f=0

[
ϕ̂

j
2(f)

P1+2(f,t)
· Px(f,t)
P1+2(f,t)

]

∑F−1
f=0

[
ϕ̂

j
2(f)

P1+2(f,t)

]

(3.8)

Intuitively, this multiplicative update rule can also be the result of the additive update

rule when the step size is chosen to be -





µ1 = [ai
1(t)]n · ϕ̂i

1(f)

P1+2(f,t)

µ2 =
[
aj

2(t)
]
n
· ϕ̂j

2(f)

P1+2(f,t)

Following the gain estimation for each pair of CB entries, the GSMM flow, for exam-

ple, checks if a given pair is active according to its posterior probability for describing

the observed mixture. We can use the same logic here; however, the altered posterior

probability needs to be properly defined beforehand. We will assume, once again, that

minimization of the altered IS distortion measure is equivalent to maximizing the altered
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log-likelihood probability (as in eq. (2.53)).

argmin(i,j)

{
D̃IS (Px(f, t), P1+2(f, t))

}

= argmin(i,j)

{
1

F

F−1∑

f=0

λf

[
Px(f, t)

P1+2(f, t)
− log

(
Px(f, t)

P1+2(f, t)

)
− 1

]}

= argmax(i,j)

{
C +

F−1∑

f=0

λf

2

[
log

(
1

P1+2(f, t)

)
− Px(f, t)

P1+2(f, t)

]}

= argmax(i,j)

{
log

[
p̃(x| θi

1, θ
j
2, â

i
1, â

j
2)

]}

The altered ML probability, p(x| θi
1, θ

j
2, â

i
1, â

j
2), can be deduced from the altered log-

likelihood probability -

argmax(i,j)

{
log

[
p̃(x| θi

1, θ
j
2, â

i
1, â

j
2)

]}

= argmax(i,j)

{
F−1∏

f=0

[P1+2(f, t)]−
λf
2 · exp

(
−λf · Px(f, t)

2P1+2(f, t)

)}

= argmax(i,j)

{
F−1∏

f=0

{
[P1+2(f, t)]−

1
2 · exp

(
− Px(f, t)

2P1+2(f, t)

)}λf

}

= argmax(i,j)

{
p̃(x| θi

1, θ
j
2, â

i
1, â

j
2)

}

One can observe that the altered ML probability is quite similar to the original ML

probability in the GSMM scenario (The two ML probabilities coincide for λf = 1,∀f =

[0, . . . , F − 1]). Once again, each Gaussian component is contributing to the total likeli-

hood score. However, the contribution is controlled by the frequency dependent weight,

λf . Finally, the altered posterior probability has the following structure -

p̃(θi
1, θ

j
2|x, âi

1, â
j
2) ∝ p̃(x| θi

1, θ
j
2, â

i
1, â

j
2) · Pr (θ1

i ) · Pr (θ2
j ) (3.9)

3.2.1 Algorithmic Flow

At this stage, the actual single channel BSS algorithm with the frequency based cost func-

tion can be presented. We will introduce the generalized algorithm based on the GSMM

flow. Due to the similarity between the IS distortion measure and the ML probability,

it is straightforward to implement the same generalization for the AR-based separation

algorithms as well. The separation process is divided into three stages:
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1. Off-line learning stage:

This is a similar stage to the GSMM-based separation algorithm off-line stage. A

clustering algorithm (e.g., K-means or EM) is applied on a training data in order

to define the CB representatives.

2. Gain Estimation:

Given the observed mixture PSD in a specific time frame, the gain factors of each

pair of CB representatives are estimated using the altered ML probability function.

The estimation can be performed using the Gradient Descent additive update rule

(see eq. (3.7)) or by using a multiplicative update rule, as suggested in [13,30] (see

eq. (3.8)).

3. Source Separation:

Following the gain estimation stage, it is possible now to separate the sources from

their mixture. First, the altered posterior probability is calculated for each pair of

CB representatives (see eq. (3.9)). Second, since each pair of CB representatives

and their estimated gain factor defines the PSD of the estimated sources, a Wiener

Filtering scheme can be applied to separate the sources. Within the MAP estimator

framework (see eq. (2.10)), only the pair with the highest altered posterior proba-

bility will be taken under consideration when estimating the sources. Nevertheless,

within the MMSE estimator framework (see eq. (2.11)), the estimation is a weighted

mean of the separation results using all the possible pairs (The weights are defined

according to the altered posterior probability value).

3.2.2 Choosing λf

In our perspective, there are two approaches for defining the values of {λf}F−1
f=0 :

1. Defining the weights according to the sources characteristics. i.e., if the sources

populate only a specific range of frequency bins, these frequency weights should

be larger in comparison to the weights of other frequency bins. The information

regarding the active range of each source can be learnt during the off-line training

stage of the single channel BSS algorithm.
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2. Defining the weights according to the instantaneous mixture observation. We will

analyze the PSD of the observation and control the frequency weights using the

PSD’s features, such as its magnitude in a specific frequency bin. Two suggestions

for defining λf according to the observed mixture PSD are -

• Using Px(f, t) mean value:

λf =1 + γ ·
(

Px(f, t)−
F−1∑

f=0

Px(f, t)

)

s.t λf ≥ 0,∀f = [0, . . . , F − 1]

By appropriately setting values of γ, one can exclude frequency bins with

smaller values from the altered cost function, while giving much more attention

to frequency bins with higher values.

• Linear increment of λf :

λf =





λmax Px(f, t) > Pmax

λmax(Px(f,t)−Pmin)+λmin(Pmax−Px(f,t))
Pmax−Pmin

Pmin ≤ Px(f, t) ≤ Pmax

0 Px(f, t) < Pmin

(3.10)

This selection of λf will allow us to disregard any frequency bin which is bellow

some noise threshold (Pmin) and linearly improve the value of λf until the

frequency bin value reaches some upper limit (Pmax).

3.3 Distant PSDs Prior

In this section, we introduce a new CB-based separation approach, which evolves from the

GSMM and AR-based single channel BSS algorithms. As was shown beforehand, there

are two main challenges in separating the observed mixture:

1. Estimating the appropriate gain factors for each pair of representatives from the

sources’ CBs.

2. Determining the active pair of Codebook representatives that should be used for

describing each source’s PSD in the actual separation scheme (e.g. Wiener filtering).
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In the GSMM separation frameworks, the first challenge of gain estimation is met by

maximizing the likelihood probability (see eq. (2.8)) -

(âi
1, â

j
2) = argmax(ai

1,aj
2)≥0

{
p(θi

1, θ
j
2|x, ai

1, a
j
2)

}

Or equivalently, in the AR framework, by minimizing the IS distortion function in the

STFT domain1 -

(âi
1(t), â

j
2(t)) = argmin(ai

1(t),aj
2(t))≥0

{
DIS

(
Px(f, t), ai

1(t) · ϕi
1(f) + aj

2(t) · ϕj
2(f)

)}

The second challenge is solved by introducing priors to the GSMM scheme (as can be

seen in eq. (2.49)) -

p(θi
1, θ

j
2|x) u p(x| θi

1, θ
j
2, â

i
1, â

j
2) · Pr (θi

1) · Pr (θj
2)

while seeking for the pair of representatives, (i∗, j∗), that will maximize the MAP criterion.

Within the AR framework, however, no additional priors are used2 and the optimal pair,

(i∗, j∗), is chosen by maximizing the IS distortion function (see eq. (3.1)).

By observing these cost functions, one can deduce that the gain estimation process

seeks for the PSD, P1+2(f, t), that will be as close as possible to the observed PSD,

Px(f, t). Additionally, the active pair search is only using prior information regarding

the tendency for using a specific CB representative. It seems that throughout the entire

separation flow, there is no mention of the actual goal of the algorithm: to successfully

separate the mixture to its components.

An important cue that can help in the separation process is to understand the interac-

tion between the two distinguished sources. Indeed, one of the fundamental assumptions

of the GSMM and AR based separation algorithms is that the sources are statistically

independent; however, this by itself may not be enough to successfully determine how the

separated signals should be constructed for a specific time-frequency bin. For instance,

1the connection between the log-likelihood function and the IS distortion measure is discussed in

section 2.7.
2The lack of additional priors can also be interpreted as a MAP criterion in which the prior probability

of each of the representatives is identical.
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in [14], a GMM scheme is incorporated in order to separate the observed mixture. How-

ever, the authors further suggest de-correlating the estimated sources in order to enhance

the separation performance. i.e., even though the sources were assumed to be uncorre-

lated throughout the separation scheme, the usage of an additional de-correlation stage

enhances the separation results.

The aforementioned argument can point the way to an additional alteration of the

basic single channel BSS cost function. Instead of only finding the best match between

the observed PSD and the combined PSD that has evolved from a chosen pair of CB

representatives, we can also suggest that the separated signals should be as ’distant’ as

possible. The question that arises at this stage is how to measure this distance between

the signals? One suggestion would be to assess the de-correlation amount between the

estimated sources in the time domain (similar to the post processing stage, as described

in [14]). Another suggestion would be to compare the PSDs of the estimated sources at

each time frame. A favorable attribute of the later suggestion is that it can be naturally

embedded within the framework of the AR, GSMM or NMF based single channel BSS

algorithms. Thus, in the forthcoming algorithmic investigation, we will concentrate on

the PSD-based distance measure.

3.3.1 Theoretical Framework

In order to understand how the PSD-based distance prior can be incorporated within the

separation flow, we will commence with the basic MAP criterion in the GSMM/AR-based

frameworks. According to eq. (2.9) -

p(θi
1, θ

j
2|x) u p(θi

1, θ
j
2| x, âi

1, â
j
2) (3.11)

If we incorporate Bayes rule on the MAP criterion -

p(θi
1, θ

j
2|x, âi

1, â
j
2) u p(x| θi

1, θ
j
2, â

i
1, â

j
2) · p(θi

1, θ
j
2| âi

1, â
j
2) (3.12)

The ML likelihood cost function, p(x| θi
1, θ

j
2, â

i
1, â

j
2), is well known to us at this stage;

nevertheless, the prior term, p(θi
1, θ

j
2| âi

1, â
j
2), is of interest here. In the regular GSMM

framework, the chosen pair, (θi
1, θ

j
2), is assumed to be mutually independent and unrelated
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to the chosen estimated gain factors, i.e. -

p(θi
1, θ

j
2| âi

1, â
j
2) = p(θi

1, θ
j
2) = Pr (θi

1) · Pr (θj
2)

Hence, the MAP criterion coincides with eq. (2.49).

By using our newly introduced argument, the chosen pair of representatives is indeed

dependent on the estimated gain factors. If we incorporate Bayes rule once more -

p(θi
1, θ

j
2| âi

1, â
j
2) =

p(âi
1, â

j
2| θi

1, θ
j
2)

p(âi
1, â

j
2)

· p(θi
1, θ

j
2) (3.13)

The term p(âi
1, â

j
2| θi

1, θ
j
2) can be interpreted as the probability that these specific estimated

gain factors (âi
1, â

j
2) will be chosen, given that the (i, j) pair of the CB representatives

is used. Let us recall that the CB representatives, (θi
1, θ

j
2), define the shape of each of

the sources’ estimated PSD and the estimated gain factors, (âi
1, â

j
2), determine the linear

combination coefficient of the sources’ PSD in the creation of the joint estimated PSD -

P1+2(f, t) = P1(f, t) + P2(f, t) = âi
1(t) · ϕi

1(f) + âj
2(t) · ϕj

2(f) (3.14)

As a result, the term p(âi
1, â

j
2| θi

1, θ
j
2) can also be addressed as the probability that the two

PSD, (P1(f, t), P2(f, t)) were chosen together. Hence, eq. (3.13) can also be formulated

as-

p(θi
1, θ

j
2| âi

1, â
j
2) ∝ p(P1(f, t), P2(f, t)) · Pr (θi

1) · Pr (θj
2) (3.15)

By using eq. (3.15), we have managed to maintain the previously used a-prior knowl-

edge on each CB representative, while embedding an additional constraint regarding the

’distance’ between the estimated PSD of each source, with the term p(P1(f, t), P2(f, t)).

Intuitively, the probability function that reflects the PSD distance should obtain low val-

ues when the two PSDs are similar and high values for distant PSDs. The PSD-based

probability function may be based on various distance metrics. Here are two possible

descriptions:

• L2 Norm:

p(P1(f, t), P2(f, t)) = A · exp

{
γ · 1

2
‖P1(f, t)− P2(f, t)‖2

2

}
(3.16)

This probability function will use the L2 norm in order to measure the distance

between the two PSDs.
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• IS distortion measure:

p(P1(f, t), P2(f, t)) = A · exp

{
γ · F

2
·DIS (P1(f, t), P2(f, t))

}
(3.17)

This probability function will use the IS distortion measure in order to assess the

distance between the two PSDs. As we have already mentioned, the IS distortion

measure is better suited for analyzing spectral shapes differences. Nevertheless, it

is more complicated than the L2 norm approach.

In both descriptions, A is a normalization factor (to ensure that p(P1(f, t), P2(f, t)) is

indeed a probability function), F represents the number of frequency bins and γ represents

the strength of the prior (Will be regarded later as a Lagrange multiplier).

The signal distance constraint and the altered cost function can affect the way the

two mentioned challenges are met in the framework of the CB-based single channel BSS

algorithm:

1. Gain Factor Estimation

Instead of using the ML criterion (as in eq. (2.8)) in order to estimate the gain

factors for a given pair of CB representatives, we will add an additional prior into

the gain estimation process and turn it into a MAP criterion:

(âi
1, â

j
2) = argmax(ai

1,aj
2)≥0

{
p(x| θi

1, θ
j
2, a

i
1, a

j
2) · p(P1(f, t), P2(f, t))

}
(3.18)

We can apply log on the cost function -

argmax(ai
1,aj

2)≥0

{
p(x| θi

1, θ
j
2, a

i
1, a

j
2) · p(P1(f, t), P2(f, t))

}

= argmax(ai
1,aj

2)≥0

{
log

[
p(x| θi

1, θ
j
2, a

i
1, a

j
2)

]
+ log [p(P1(f, t), P2(f, t))]

}

As was similarly seen in eq. (2.50) -

p(x| θi
1, θ

j
2, â

i
1, â

j
2) = (2π)−

F
2

F−1∏

f=0

[P1+2(f, t)]−
1
2 · exp

{
− Px(f, t)

2 · P1+2(f, t)

}

⇒ log
[
p(x| θi

1, θ
j
2, a

i
1, a

j
2)

]
= C +

1

2

F−1∑

f=0

[
log

(
1

P1+2(f, t)

)
− Px(f, t)

P1+2(f, t)

]
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Hence -

argmax(ai
1,aj

2)≥0

{
log

[
p(x| θi

1, θ
j
2, a

i
1, a

j
2)

]
+ log [p(P1(f, t), P2(f, t))]

}

= argmax(ai
1,aj

2)≥0

{
1

2

F−1∑

f=0

[
log

(
1

P1+2(f, t)

)
− Px(f, t)

P1+2(f, t)

]
+ log [p(P1(f, t), P2(f, t))]

}

= argmin(ai
1,aj

2)≥0

{
1

2

F−1∑

f=0

[
Px(f, t)

P1+2(f, t)
− log

(
Px(f, t)

P1+2(f, t)

)
− 1

]
− log [p(P1(f, t), P2(f, t))]

}

= argmin(ai
1,aj

2)≥0

{
F

2
·DIS (Px(f, t), P1+2(f, t))− log [p(P1(f, t), P2(f, t))]

}

If we will use the two mentioned examples for p(P1(f, t), P2(f, t)), the relation may

be formulated as:

• L2 Norm:

argmax(ai
1,aj

2)≥0

{
p(x| θi

1, θ
j
2, a

i
1, a

j
2) · p(P1(f, t), P2(f, t))

}
(3.19)

= argmin(ai
1,aj

2)≥0

{
DIS (Px(f, t), P1+2(f, t))− γ · 1

F
‖P1(f, t)− P2(f, t)‖2

2

}

• IS distortion measure:

argmax(ai
1,aj

2)≥0

{
p(x| θi

1, θ
j
2, a

i
1, a

j
2) · p(P1(f, t), P2(f, t))

}
(3.20)

= argmin(ai
1,aj

2)≥0 {DIS (Px(f, t), P1+2(f, t))− γ ·DIS (P1(f, t), P2(f, t))}

As can be seen in eq. (3.19) and (3.20), the altered cost function is quite similar to

the original one, with a small extension. Instead of only adjusting the gain factors

in order to match the estimated PSD, P1+2(f, t), with the observed PSD, Px(f, t),

there is now an additional term to consider; The estimated gain factors should also

be determined in such a way that will push apart the estimated PSDs (using the L2

norm or the IS-based cost functions). The parameter γ can be further interpreted

as the trade-off between the two cost functions (Lagrange multiplier). For example,

a bigger value for γ will favor distant PSDs on top of matching the observed PSD.

Smaller value for γ will result in the opposite outcome, favoring the matching of the

observed PSD by the estimated PSDs of the sources. Additionally, one can observe

that for γ = 0, the altered cost function coincides with the original cost function.
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In order to minimize the altered cost function, we will calculate its derivative with

respect to ai
1 and aj

2. We will denote the altered cost function that has evolved from

the L2 norm by C1(a
i
1, a

j
2) and the altered cost function that has evolved from the

IS distortion function by C2(a
i
1, a

j
2), i.e. -

C1(a
i
1, a

j
2) = DIS (Px(f, t), P1+2(f, t))− γ · 1

F
‖P1(f, t)− P2(f, t)‖2

2 (3.21)

C2(a
i
1, a

j
2) = DIS (Px(f, t), P1+2(f, t))− γ ·DIS (P1(f, t), P2(f, t)) (3.22)

Thus, the derivative of C1(a
i
1, a

j
2) can be expressed as -

∂C1(a
i
1, a

j
2)

∂ai
1

=
1

F

F−1∑

f=0

ϕi
1(f)

P1+2(f, t)2
· (3.23)

· [
P1+2(f, t)− Px(f, t) + γ

(
aj

2(t) · ϕj
2(f)− ai

1(t) · ϕi
1(f)

) · P1+2(f, t)2
]

∂C2(a
i
1, a

j
2)

∂aj
2

=
1

F

F−1∑

f=0

ϕj
2(f)

P1+2(f, t)2
· (3.24)

· [
P1+2(f, t)− Px(f, t) + γ

(
ai

1(t) · ϕi
1(f)− aj

2(t) · ϕj
2(f)

) · P1+2(f, t)2
]

Similarly, the derivative of C2(a
i
1, a

j
2) can be expressed as -

∂C2(a
i
1, a

j
2)

∂ai
1

=
1

F

F−1∑

f=0

ϕi
1(f)

P1+2(f, t)2
· (3.25)

·
[
P1+2(f, t)− Px(f, t) + γ

(
1

ai
1(t) · ϕi

1(f)
− 1

aj
2(t) · ϕj

2(f)

)
· P1+2(f, t)2

]

∂C2(a
i
1, a

j
2)

∂aj
2

=
1

F

F−1∑

f=0

ϕi
1(f)

P1+2(f, t)2
· (3.26)

·
[
P1+2(f, t)− Px(f, t) + γ

(
1

aj
2(t) · ϕj

2(f)
− 1

ai
1(t) · ϕi

1(f)

)
· P1+2(f, t)2

]

By using the gradient descent algorithm we can reach a local minimum of C1(a
i
1, a

j
2)

or C2(a
i
1, a

j
2) . Thus, the update rule of the gain factors can be formulated as -





[ai
1(t)]n+1 = [ai

1(t)]n − µ1 · ∂C(ai
1,aj

2)

∂ai
1

∣∣∣∣
[ai

1(t)]
n
,[aj

2(t)]
n[

aj
2(t)

]
n+1

=
[
aj

2(t)
]
n
− µ2 · ∂C(ai

1,aj
2)

∂aj
2

∣∣∣∣
[ai

1(t)]
n
,[aj

2(t)]
n

(3.27)
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Where C(ai
1, a

j
2) can represents C1(a

i
1, a

j
2) or C2(a

i
1, a

j
2) , [ai

1(t)]n represents the value

of ai
1(t) at the nth iteration of the gradient descent algorithm and µ1, µ2 represent

the step size of the gradient descent algorithm for each of the gain factors. These

update rules for gain factor estimation can be incorporated in each of the CB-based

single channel BSS algorithm. For instance, in the GSMM-based flow, an altered

multiplicative update rule can be used (refer to eq. (3.7) for a similar alteration).

Additionally, the gain estimation stage in the AR-based flow, that is performed

using a 2× 2 matrix inversion (see section 2.5 and [25]), can also be easily updated

according to the altered cost function.

2. Choosing the active pair

The goal at this stage is to identify the two CB representatives (with given gain

factors) that will be used in the actual separation process. Previously, the CB pairs

were evaluated and ranked according to the MAP criterion (as appears in eq. (2.49))

-

(i∗, j∗) = argmax(i,j)

{
p(x| θi

1, θ
j
2, â

i
1, â

j
2) · Pr (θi

1) · Pr (θj
2)

}
(3.28)

This evaluation took under consideration the CB representatives’ a-prior probabili-

ties,
{
Pr(θi

1), Pr (θj
2)

}
and the distance between the evolved PSD and the observed

PSD. It is suggested here to rank the CB pairs using the altered cost function.

According to eq. (3.15), the suggested MAP criterion can be formulated as -

(i∗, j∗) = (3.29)

argmax(i,j){p(x| θi
1, θ

j
2, â

i
1, â

j
2) · p(P1(f, t), P2(f, t)) · Pr (θi

1) · Pr (θj
2)}

Thus, in addition to the objectives that were achieved by the original MAP criterion,

a new requirement is confronted in eq. (3.29). The ranking of CB pairs should also

take under consideration the distance between the PSDs of each estimated source.

The PSDs distance prior can be incorporated using either the L2 based measure (as

in eq. (3.16)) or the IS distortion based measure (as in eq. (3.17)).
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3.3.2 Algorithmic Flow

Following the theoretical investigation of the newly introduced PSD prior, we can now

describe the actual single channel BSS algorithm with the altered cost function. We

will introduce the altered algorithm based on the GSMM flow. Following the similarity

between the GSMM-based log-likelihood cost function and the AR-based IS distortion

measure (see section 2.7 for further details), it is straightforward to implement this alter-

ation also in the AR-based separation algorithms. The separation process is divided into

three stages:

1. Off-line learning stage:

This stage is a similar to the GSMM-based separation algorithm off-line stage. A

clustering algorithm (e.g., K-means or EM) is applied on a training data in order

to define the CB representatives.

2. Gain Estimation:

Given the observed mixture PSD in a specific time frame, the gain factors of each

pair of CB representatives are estimated using the suggested MAP probability func-

tion (see eq. (3.19) and (3.20)). It is also possible to estimate the gain factors using

the original ML estimator, by setting the Lagrange multiplier, γ, to zero. The es-

timation can be performed using the Gradient Descent update rule (see eq. (3.27))

or an alteration of the multiplicative update rule (refer to eq. (3.7) for a similar

alteration).

3. Source Separation:

As a first stage, the altered posterior probability is calculated for each pair of CB

representatives (see eq. (3.29)). Consecutively, within the MAP estimator frame-

work (see eq. (2.10)), only the pair with the highest altered posterior probability

will be taken under consideration when estimating the sources. By using the MMSE

approach for source separation (see eq. (2.11)), the estimation is a weighted mean of

the separation results using all the possible pairs (The weights are defined according

to the altered posterior probability value).
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3.4 Summary

In this chapter, we have provided the background and motivation for two suggested source

separation algorithms.

In the first algorithm presentation, we have proposed a frequency-selective single chan-

nel BSS algorithm. We have shown that by altering the basic cost function (or posterior

probability function) and introducing weights for each frequency bin, {λf}F−1
f=0 , we may

favor some frequency bins in comparison to others. This differentiation is of value when

comparing the observed mixture PSD with the PSD that evolved from a selected pair of

CB representatives. In our experimental study, in section 4.4, we will show several sepa-

ration scenarios in which the frequency selective single channel BSS algorithm is superior

to its GSMM and AR counterparts.

In the second algorithm presentation, we have proposed an additional alteration to

the CB-based single channel BSS cost function. The original cost function was based on

two distinct priors:

(a) The sources are statistically independent.

(b) Each CB representative, θi, has a prior probability, Pr (θi), for being chosen to

describe the source’s PSD in the observe mixture.

Following a post-processing de-correlation example [14], we have introduced an additional

prior on the chosen CB representatives. The prior, p(P1(f, t), P2(f, t)), favors the selection

of CB representatives that are as distant as possible for the mixture separation. We

have shown that the suggested prior can be naturally embedded within the framework of

the GSMM/AR-based BSS algorithms and provided an updated algorithmic flow for the

altered separation algorithm. In our experimental study, in section 4.5, we will perform

several separation experiments and compare the distant PSD prior source separation

scheme to the GSMM-based single channel BSS algorithm.



Chapter 4

Experimental Study

Following the survey on CB-based single channel BSS algorithms and the suggested exten-

sions for the GSMM/AR baseline separation algorithms, in this chapter, we demonstrate

the separation performance of these single channel BSS algorithms by simulating a real

audio data separation scheme. First, a comparison between the performances of the base-

line separation algorithms is shown. Second, we compare the separation performance of

the suggested extensions to the GSMM-based single channel BSS separation algorithm.

4.1 Evaluation Criteria

In order to compare the separation performance of the single channel BSS algorithms,

an evaluation criterion is needed. We use the Signal to Interference Ratio (SIR) and the

Signal to Distortion Ratio (SDR) distortion measures as described in [21]. The SIR and

SDR distortion measures are based on the orthogonal projection of the estimated signals,

(ŝ1, ŝ2), onto the subspace of the original sources, (s1, s2). Consequently, the estimated

signals can be represented using the following formulation -





ŝ1 = α1 · s1 + α2 · s2 + n1

ŝ2 = β1 · s1 + β2 · s2 + n2

(4.1)

Where (n1, n2) are the projections’ errors (can also be regarded as a modeling error or

as the algorithm’s artifacts). The projection coefficients {αi, βi}i=1,2 should be calculated

using an inner product with the bi-orthogonal counterparts of (s1, s2), however, due to

66
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the non-correlation assumption of the sources, the coefficients can be derived using -



α1 = 〈ŝ1, s1〉
α2 = 〈ŝ1, s2〉
β1 = 〈ŝ2, s1〉
β2 = 〈ŝ2, s2〉

(4.2)

The SIR for a given estimated source measures the amount of distortion that was

introduced by the un-wanted source to the desired source estimation. The SIR can be

formulated as - 



SIR1 = 20 · log
(
‖α1·s1‖
‖α2·s2‖

)

SIR2 = 20 · log
(
‖β2·s2‖
‖β1·s1‖

) (4.3)

The SDR for a given estimated source measures the total amount of distortion that

was introduced both due to the un-wanted signal and due to modeling errors. The SDR

can be formulated as - 



SDR1 = 20 · log
(

‖α1·s1‖
‖α2·s2+n1‖

)

SDR2 = 20 · log
(

‖β2·s2‖
‖β1·s1+n2‖

) (4.4)

4.2 Experimental Setup

Throughout our experiments, we separate a mixture of speech and a single musical in-

strument (The simulations are performed separately with piano and drums). All the

audio excerpts are sampled at 16 [KHz] rate and the STFT is calculated using a hamming

window of 512 samples length (32 [ms]) with 50% overlap between adjacent frames.

The speech signals for the CB training and the separation simulation were acquired

from the TIMIT database [55]. The speech train signal contained approximately 10

minutes of male and female utterances, while the speech test signal consisted of 10 seconds

of male utterances. The music signals (piano and drums) were collected from the web

and consisted of a single musical instrument. The train signals were approximately 10

minutes long, while the test signals were 10 seconds long.

4.2.1 Learning Stage

Each of the training signals was used as an input to an off-line learning stage, in which

an algorithm-specific clustering scheme was incorporated:
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• The GMM/GSMM-based learning stage was performed using the EM clustering

algorithm, with varying CB size.

• The AR-based learning stage was performed using the Generalized Lloyd Algorithm

[49, 50]. The CB will be represented as a set of LPCs for the AR-ML separation

algorithm and as a set of LSF coefficients for the AR-MMSE separation algorithm.

• The NMF-based learning stage was performed by incorporating the NMF scheme

[30] on the training data and keeping the basis matrix as the source CB.

4.3 GMM/AR/NMF Separation Comparison

In this section, we compare between the baseline CB-based single channel BSS algorithms.

The aim of the simulation is to separate a mixture of speech and a single musical instru-

ment (piano or drums) into its sources by using a CB size of 16 representatives per source.

We have simulated the following separation algorithms:

• The GMM-based separation algorithm (see chapter 2.4)

(1) GMM-MAP - using the MAP criterion within the GMM framework.

(2) GMM-MMSE - using the MMSE criterion within the GMM framework.

(3) GSMM-MAP - using the MAP criterion within the GSMM framework.

(4) GSMM-MMSE - using the MMSE criterion within the GSMM framework.

• The AR-based separation algorithm (see chapter 2.5)

(5) AR-ML - using the ML criterion within the AR framework.

(6) AR-MMSE1 - MMSE estimation of the optimal LPF coefficients for each

source (based on eq.(2.21)).

(7) AR-MMSE2 - MMSE estimation of the optimal Wiener filter for the source

separation (based on eq.(2.22)).

• The NMF-based separation algorithm (see chapter 2.6)
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(8) NMF - using the basic NMF decomposition scheme with the KL divergence

cost function (based on eq. (2.32)).

4.3.1 Speech - Piano Separation

In Figure 4.1, one can observe the speech signal, the piano signal and their mixture, in

the time domain and in the STFT domain.

The results of the eight baseline separation algorithms are organized as follows: the

spectrograms of the speech source estimation are available in figure 4.2, while the spec-

trograms of the piano source estimations are available in figure 4.3. The SIR and SAR

measurements are organized in table 4.1.



CHAPTER 4. EXPERIMENTAL STUDY 70

0 0.5 1 1.5 2 2.5 3
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [Sec] Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

(a) (b)

0 0.5 1 1.5 2 2.5 3
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [Sec] Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

(c) (d)

0 0.5 1 1.5 2 2.5 3
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [Sec] Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

(e) (f)

Figure 4.1: Time and STFT description of the speech and piano signals. Speech signal in the time

domain (a) and its spectrogram (b). Piano signal in the time domain (c) and its spectrogram (d).

Speech and piano mixture in the time domain (e) and the mixture’s spectrogram (f).
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Figure 4.2: Spectrograms of the estimated speech signal from the speech-piano mixture. (a) Orig-

inal speech signal, (b) GMM-MAP, (c) GMM-MMSE, (d) NMF, (e) GSMM-MAP, (f) GSMM-

MMSE, (g) AR-ML, (h) AR-MMSE1, (i) AR-MMSE2.
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Figure 4.3: Spectrograms of the estimated piano signal from the speech-piano mixture. (a) Orig-

inal piano signal, (b) GMM-MAP, (c) GMM-MMSE, (d) NMF, (e) GSMM-MAP, (f) GSMM-

MMSE, (g) AR-ML, (h) AR-MMSE1, (i) AR-MMSE2.
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Table 4.1: SIR and SDR measurements of the speech-piano source separation.

Separation Speech Piano

Method SIR SDR SIR SDR

GMM-MAP 3.77 1.30 3.16 1.41

GMM-MMSE 3.78 1.33 3.17 1.43

GSMM-MAP 10.91 4.77 11.69 4.77

GSMM-MMSE 10.05 4.90 11.64 4.91

AR-ML 5.80 -2.97 1.57 0.47

AR-MMSE1 7.52 -7.54 0.52 0.25

AR-MMSE2 4.48 -1.82 0.87 0.52

NMF 8.85 3.09 9.61 3.03

By observing the separation results, it seems that the GSMM-based separation algo-

rithms are superior in sense of the SIR and SDR measurements in comparison with the rest

of the CB-based separation algorithms. The GSMM-MAP and the GSMM-MMSE sepa-

ration algorithms produce almost identical separation results, with some minor changes

in the resulting spectrograms which are un-noticeable in listening tests. The superiority

of the GSMM-based separation over the GMM-based separation is quite intuitive, since

the GSMM is simply a generalization of the GMM which allows for further flexibility in

choosing the gain factors for each CB representative. Once again, there is no perceivable

difference between the GMM-MAP and the GMM-MMSE separation methods, either in

the spectrogram shape or in listening tests. The NMF-based source separation has given

relatively high SIR and SDR measurements; nevertheless, the separation quality in the lis-

tening tests is still not adequate in comparison with the GSMM-based separation results.

The AR-based separation methods produced unsatisfying estimation results, probably be-

cause the Auto-regressive model is not sufficiently suitable to describe the piano spectral

envelope. The AR-related SIR and SDR scores are significantly lower then their GSMM

counterparts. Moreover, by observing the spectrogram, it seems that there are significant

residues of piano within the speech estimation and vice versa.
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4.3.2 Speech - Drums Separation

In Figure 4.4, one can observe the speech signal, the drums and their mixture, in the time

domain and in the STFT domain.
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Figure 4.4: Time and STFT description of the speech and drums signals. Speech signal in the

time domain (a) and its spectrogram (b). Drums signal in the time domain (c) and its spectro-

gram (d). Speech and drums mixture in the time domain (e) and the mixture’s spectrogram (f).
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Figure 4.5: Spectrograms of the estimated speech signal from the speech-drums mixture.

(a) Original speech signal, (b) GMM-MAP, (c) GMM-MMSE, (d) NMF, (e) GSMM-MAP,

(f) GSMM-MMSE, (g) AR-ML, (h) AR-MMSE1, (i) AR-MMSE2.



CHAPTER 4. EXPERIMENTAL STUDY 76

Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

(a) (b) (c)

Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

(d) (e) (f)

Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [Sec]

F
re

qu
en

cy
 [H

z]

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

(g) (h) (i)

Figure 4.6: Spectrograms of the estimated drums signal from the speech-drums mixture.

(a) Original drum signal, (b) GMM-MAP, (c) GMM-MMSE, (d) NMF, (e) GSMM-MAP,

(f) GSMM-MMSE, (g) AR-ML, (h) AR-MMSE1, (i) AR-MMSE2.
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Table 4.2: SIR and SDR measurements of the speech-drums source separation.

Separation Speech Drums

Method SIR SDR SIR SDR

GMM-MAP 16.47 9.86 18.74 10.22

GMM-MMSE 16.29 9.86 18.68 10.24

GSMM-MAP 21.18 12.66 31.98 13.09

GSMM-MMSE 21.07 12.81 31.88 13.26

AR-ML 16.43 9.76 22.60 10.07

AR-MMSE1 9.98 6.85 27.29 6.98

AR-MMSE2 7.26 5.92 22.93 7.61

NMF 27.35 12.17 23.20 12.55

As before, the results of the eight baseline separation algorithms are organized as

follows: the spectrograms of the speech source estimation are available in figure 4.5,

while the spectrograms of the drums source estimations are available in figure 4.6. The

SIR and SAR measurements are organized in table 4.2. By examining the piano and

drums signals in the time domain and in their respective spectrograms, one can deduce

that the speech-drums separation scenario is simpler than the speech-piano setup. This

statement may also be justified by the following observations: the piano signal is active

in a much wider range of time frames in comparison with the drums signal. Furthermore,

the resemblance between the piano-speech signals is higher than the resemblance between

the drums-speech signals. In practice, this intuitive statement is also supported by the

relatively high SIR and SDR scores that were achieved in the speech-drums separation.

If we further observe the separation measures and the source estimation spectrograms,

the best SIR score for the speech estimation was obtained by the NMF-based separation

algorithm, while the best SDR score resulted from the GSMM-based separation. In our

listening tests it seems that the GSMM-based separation result has an improved speech

quality at a price of stronger drums interference, while the NMF-based separation suffers

from diminished speech quality with less drums interferences.

The drums estimation enjoys maximal SIR and SDR scores when the GSMM-based

separation algorithms are selected (the GSMM-MAP and the GSMM-MMSE practically

produce the same estimation). The same outcome is obtained in the listening tests, in
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which, almost no residual speech is present in the drums estimation. The NMF-based

estimation, which proved to be successful in the speech estimation, gives poor separation

results with significant speech residuals. The AR-MMSE1 estimation, gives GSMM-like

estimation results for the drums source, nevertheless, its speech estimation performance,

both in score and in listening tests is inferior to the GSMM-based estimation.

4.3.3 CB Size Influence

The CB-based separation algorithms’ capabilities are tightly related to how well the source

signal is modeled and represented within the CB. One particular characteristic of the CB

is the number of representatives in it. Tables 4.3 and 4.4 shows two examples of source

separation performance measurements as a function of the CB size1. Table 4.3 describes

the estimation scores of the GSMM-MAP source separation algorithm, while table 4.3

describes the estimation scores of the NMF source separation algorithm. Both tables

summarize the estimation scores of the speech-piano and speech-drums experiments.

When choosing a CB size for separation tasks, there is an inherent trade-off that needs

to be considered. On the one hand, the size of the CB should be as large as possible in

order to successfully model the quasi-stationary source. On the other hand, if the CB size

is too big, the interfering signal may also by mistakenly represented by the rich model and

deteriorate the separation performance. In our case, one can easily observe that nearly

every column of separation scores achieves its maximal value when the CB size equals 16.

1The CB size, K, is identical for the two sources, i.e., K1 = K2 = K
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Table 4.3: SIR and SDR measurements of the speech-piano and the speech-drums GSMM-MAP

source separation algorithm with varying CB size.

Speech-Piano Separation Speech-Drums Separation

Speech Piano Speech Drums

CB Size SIR SDR SIR SDR SIR SDR SIR SDR

K = 4 9.46 4.62 11.17 4.60 18.44 11.50 31.37 11.89

K = 8 10.91 4.77 11.69 4.77 18.74 11.71 32.96 12.11

K = 16 14.14 6.68 13.02 6.74 21.18 12.66 31.98 13.09

K = 32 15.27 6.24 13.94 6.34 21.11 12.53 31.22 12.89

K = 64 16.09 6.25 13.62 6.32 20.78 12.14 31.12 12.73

Table 4.4: SIR and SDR measurements of the speech-piano and the speech-drums NMF-based

source separation algorithm with varying CB size.

Speech-Piano Separation Speech-Drums Separation

Speech Piano Speech Drums

CB Size SIR SDR SIR SDR SIR SDR SIR SDR

K = 4 8.28 2.09 7.16 2.38 26.26 11.83 22.74 12.19

K = 8 8.85 3.09 9.61 3.03 25.99 12.01 23.02 12.37

K = 16 11.28 3.91 10.44 4.04 27.35 12.17 23.20 12.55

K = 32 9.70 3.21 8.28 3.43 25.95 11.71 22.59 12.05

K = 64 8.58 2.83 6.31 3.09 22.75 11.49 20.57 11.77
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4.4 Frequency-dependent Separation Simulation

In this section, the frequency dependent source separation algorithm is simulated and

compared against the GSMM-MAP separation algorithm. The altered separation algo-

rithm (denoted as GSMM-FREQ) is implemented as a generalization of the GSMM-MAP

separation algorithm (see chapter 3.2) and is simulated with a CB size of 16 representa-

tives. Throughout the GSMM-FREQ simulation, the frequency dependent weight, λf , is

linearly incremented according to the mixture’s PSD value in the specific time-frequency

bin. Recalling eq. (3.10) -

λf =





λmax Px(f, t) > Pmax

λmax(Px(f,t)−Pmin)+λmin(Pmax−Px(f,t))
Pmax−Pmin

Pmin ≤ Px(f, t) ≤ Pmax

0 Px(f, t) < Pmin

The equation parameters will have the following values:

λmax = 2, λmin = 0.1, Pmax = 0.6 ·max(f,t) {Px(f, t)}, Pmin = 1
6
· Pmax.

As was mentioned in chapter 3.2, this selection of λf will give more attention to frequency

bins with higher energy and will overlook frequency bins with lower energy throughout

the gain factor estimation stage.

In figure 4.7, a comparison between the GSMM-MAP and the GSMM-FREQ esti-

mated spectrograms for the speech-piano experiment is shown. The resulting separation

scores are also included in table 4.5. As can be observed from the separation scores, the

GSMM-FREQ separation algorithm has given slightly superior results over the GSMM-

MAP separation algorithm for this specific experiment. If we further observe the spec-

trograms differences, it seems that the amount of interferences from the undesired source

are diminished without causing further degradation to the estimated source quality. The

same observation is reached by listening tests.

Respectively, figure ?? shows the GSMM-MAP and the GSMM-FREQ estimated spec-

trograms for the speech-drums experiment, with the separation scores available in table

4.6. Regarding the speech estimation results, it seems that the GSMM-FREQ algorithm

has given superior separation results in comparison with the GSMM-MAP algorithm in

terms of separation scores and listening tests. On the other hand, the drums estimation

result suffers from slightly more residual speech in the GSMM-FREQ algorithm in com-
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parison with the GSMM-MAP algorithm. This observation is visible in the drums SIR

score and slightly noticeable in listening tests.

In conclusion, within the experimental framework that was describe above, it seems

that the GSMM-FREQ separation algorithm is obtaining enhanced yet similar separation

results as the original GSMM-MAP separation algorithm.

Table 4.5: Comparison between the GSMM-FREQ and the GSMM-MAP separation scores of

the speech-piano mixture.

Separation Speech Piano

Method SIR SDR SIR SDR

GSMM-MAP 14.14 6.68 13.02 6.74

GSMM-FREQ 14.28 7.03 14.18 7.15

Table 4.6: Comparison between the GSMM-FREQ and the GSMM-MAP separation scores of

the speech-drums mixture.

Separation Speech Drums

Method SIR SDR SIR SDR

GSMM-MAP 21.18 12.66 31.98 13.09

GSMM-FREQ 25.62 13.12 31.69 15.97
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Figure 4.7: Comparing the GSMM-FREQ estimation spectrograms to the GSMM-MAP esti-

mation spectrograms for the speech-piano separation experiment. (a) Original speech signal,

(b) Original piano signal, (c) GSMM-MAP speech estimation, (d) GSMM-MAP piano estima-

tion, (e) GSMM-FREQ speech estimation, (f) GSMM-FREQ piano estimation.
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Figure 4.8: Comparing the GSMM-FREQ estimation spectrograms to the GSMM-MAP esti-

mation spectrograms for the speech-drums separation experiment. (a) Original speech signal,

(b) Original drums signal, (c) GSMM-MAP speech estimation, (d) GSMM-MAP drums estima-

tion, (e) GSMM-FREQ speech estimation, (f) GSMM-FREQ drums estimation.
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4.5 Distant PSDs Prior Simulation

In this section, the Distant PSDs prior alteration is simulated and compared against the

GSMM-MAP separation algorithm. As in the GSMM-FREQ framework, this altered

separation algorithm (denoted as GSMM-PSD) is implemented as a generalization of the

GSMM-MAP separation algorithm (see chapter 3.3) with a CB size of 16 representatives.

Within the GSMM-PSD simulation we will use the altered cost function for both the

gain factor estimation and the optimal CB pair selection. The altered cost function will

be based on the L2 norm (see eq. (3.19) and (3.29)) with γ = 10−6. In figure 4.9, a

comparison between the GSMM-MAP and the GSMM-PSD estimated spectrograms for

the speech-piano experiment is shown. The resulting separation scores are also included in

table 4.7. Additionally, the results of the speech-drums separation experiment are shown

in figure 4.10 and the corresponding separation scores are given in table 4.8.

By observing the speech-piano estimation results, it seems that the GSMM-PSD alter-

ation is giving inferior, yet similar, separation results in comparison with the GSMM-MAP

separation algorithm. This opinion is further supported by comparing the separation

scores in table 4.7 and in listening tests. Nevertheless, the speech-drums experiment has

shown that the distant PSDs prior can provide added value to the separation scheme.

By investigating the estimated spectrograms it seems that in several time frames, the

GSMM-PSD algorithm has reduced the undesired signal residues without deteriorating

the estimated source quality. The estimated drums spectrogram, for example, has less

speech interferences. The separation scores are not decisive and indeed in listening tests

there is no much difference between the GSMM-PSD and the GSMM-MAP separation

algorithms.

Table 4.7: Comparison between the GSMM-PSD and the GSMM-MAP separation scores of the

speech-piano mixture.

Separation Speech Piano

Method SIR SDR SIR SDR

GSMM-MAP 14.14 6.68 13.02 6.74

GSMM-PSD 12.26 4.13 11.35 4.84
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Table 4.8: Comparison between the GSMM-PSD and the GSMM-MAP separation scores of the

speech-drums mixture.

Separation Speech Drums

Method SIR SDR SIR SDR

GSMM-MAP 21.18 12.66 31.98 13.09

GSMM-PSD 23.62 11.94 31.68 14.54

In conclusion, by observing the two comparison experiments between the GSMM-MAP

and the GSMM-PSD, it seems that this alteration approach does not produce superior

separation performance. Moreover, in our GSMM-PSD experiments several stability issues

were encountered. These issues were mainly related to the γ parameter value, i.e., small

fluctuations in γ have resulted in vast changes in the source estimation results.
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Figure 4.9: Comparing the GSMM-PSD estimation spectrograms to the GSMM-MAP esti-

mation spectrograms for the speech-piano separation experiment. (a) Original speech signal,

(b) Original piano signal, (c) GSMM-MAP speech estimation, (d) GSMM-MAP piano estima-

tion, (e) GSMM-PSD speech estimation, (f) GSMM-PSD piano estimation.
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Figure 4.10: Comparing the GSMM-PSD estimation spectrograms to the GSMM-MAP esti-

mation spectrograms for the speech-drums separation experiment. (a) Original speech signal,

(b) Original drums signal, (c) GSMM-MAP speech estimation, (d) GSMM-MAP drums estima-

tion, (e) GSMM-PSD speech estimation, (f) GSMM-PSD drums estimation.



Chapter 5

Conclusion

5.1 Summary

In this thesis we have addressed the problem of single channel blind source separation

of audio signals. The under-determined nature of the single channel BSS makes it sig-

nificantly more demanding and prevents the end-user from incorporating off-the-shelf

solutions for over-determined BSS problems (e.g., ICA-based separation).

Within the framework of this thesis, we have provided a survey of the current single

channel BSS techniques with emphasis on CB-based single channel BSS solutions. We

have further focused our interest on three types of CB-based separation algorithms: the

GMM, AR and NMF-based separation schemes. These three types separate the quasi-

stationary mixture in the STFT domain by using a linear combination of stationary spec-

tral shapes (predefined CB) with time-varying gain factors. We have further investigated

the similarities between these algorithmic types and found that basically they obey the

same fundamental structure: off-line learning stage, gain factors estimation and source

separation. The GMM/AR/NMF separation algorithms were tested on real audio data

and their separation performances were compared. By observing the results of two sepa-

ration experiments, it seems that the GSMM (a generalization of the GMM) separation

methods proved to be superior in terms of separation scores (SIR and SDR), spectrogram

shape and listening tests.

Following the investigation of the CB-based source separation techniques, two source

separation algorithms were suggested. The first algorithm introduces a slightly modified

88
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separation cost function that can differentiate between frequency bins according to their

observed energy. Following this alteration, a new algorithmic framework was devised and

simulated against the GSMM-based separation algorithm. By observing the simulation

outcome, it seems that the separation results were mostly superior in comparison with

the GSMM-based separation results. The second algorithm suggested a modification of

the entire separation process in order to encourage the selection of a PSDs pair (one for

each estimated source) that should be as distant as possible. Again, a new algorithmic

framework was devised and the evolved separation algorithm was simulated against the

GSMM-based separation algorithm. The comparison result, unlike what we expected,

showed that the GSMM solution, in most cases, is slightly superior over the modified

version. As a result, it is less attractive than our first suggested algorithm.

5.2 Future Directions

Following the survey of CB-based separation algorithms and the aforementioned separa-

tion simulation, it seems that the separation results still have not reached a satisfying

level regardless of the incorporated prior. Here are several ideas for future directions:

1. Following our first suggested source separation algorithm, it may be worthwhile

to further elaborate the frequency weights concept. Instead of only regarding the

energy of the mixture in a specific time-frequency bin, a more sophisticated feature

may improve the separation results. Additionally, the CB learning stage may give us

some additional a-priori knowledge regarding the frequency weights. For example,

if a given signal reside only in a specific frequency band, this may prove helpful

in the determination of the frequency weights. Moreover, an interesting approach

would be to embed the frequency weights concept within the NMF concept (similar

to Virtanen’s work [36]).

2. Many efforts were concentrated on pushing forward the actual on-line separation

challenge. Most of these separation schemes are still incorporating very simple

off-line clustering algorithms as part of the learning stage. Moreover, the sources

are learnt separately and independently and then used together only in the actual
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separation scheme. An interesting idea for improvement of the learning stage may

be to take under consideration the cross-correlation between the two signals. A good

example for such separation method may be Emiya et al. work [18] in which the

mixture’s GMM CB is trained during the learning stage. Indeed, this decreases the

amount of ”blindness” in the problem. Nevertheless, in systems involving a family

of specific signals, this attribute can improve the separation results.

3. Most of the CB-based single channel BSS algorithms are still concentrating on sepa-

rating the mixture within the STFT domain. It seems that additional feature spaces

should be investigated as well. A good example for such separation method may

be Litvin and Cohen’s work [24] on single channel source separation using the Bark

Scale Wavelet Packet.
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