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ABSTRACT

In this paper, we introduce a multi-scale Gaussian Markov ran-
dom field (GMRF) model and a corresponding anomaly subspace
detection algorithm. The proposed model is based on a multi-
scale wavelet representation of the image, independent compo-
nents analysis (ICA), and modeling each independent component
as a GMRF. The anomaly detection is subsequently carried out by
applying matched subspace detector (MSD) to the innovations pro-
cess of the GMRFs, incorporating a priori information about the
targets. The robustness of the proposed approach is demonstrated
with application to automatic detection of airplanes on synthetic
cloudy sky backgrounds.

1. INTRODUCTION

Gaussian Markov random field (GMRF) modeling has been ap-
plied extensively for segmentation and synthesis of texture im-
ages [1], [2], [3], [4]. G. G. Hazel has developed in [5] an anomaly
detection technique, based on the GMRF model. The detection
is carried out with no assumptions about the nature of the targets,
other than that they are rare. A single hypothesis scheme is used
for the detection of regions in a given image, which appear unlikely
with respect to the probabilistic model of the image. When a typi-
cal signature of the target is available, the detection can be carried
out by using the matched signal detector. In many applications,
the matched signal detector is replaced by a matched subspace de-
tector (MSD) - a generalization of the matched filter, as presented
in [6]. The MSD considers the problem of detecting subspace sig-
nals in subspace interference and additive noise.

In natural clutter images, scene elements often appear to have
several periodical patterns, of various period lengths. In this case,
the GMRF model may not sufficiently describe the clutter image.
Deviations of the clutter image from the GMRF model influence
the detection performance by increasing the false alarm rate. The
detection performance is also influenced by the use ofa priori
information about the targets. Anomaly detection is carried out
with no assumptions about the nature of the targets. In real detec-
tion problems, some a priori information about the targets is often
available. Using this information for rejecting anomalies which do
not resemble targets, may improve the detection performance.

In this paper, we introduce a multi-scale GMRF model and
a corresponding anomaly subspace detection algorithm. The pro-
posed model is based on a multi-scale wavelet representation of
the image and independent component analysis (ICA). We gener-
ate from a given image, three-dimensional data and each layer in
the data is then modeled as a GMRF with a different set of param-

eters. The detection is subsequently carried out by applying MSD
to the innovation process (prediction error) of the GMRF of each
layer in the data. The MSD incorporates the a priori information
about the targets into the detection process and thus improves the
detection performance.

The structure of the paper is as follows: In Section 2, we intro-
duce the multi-scale GMRF. In Section 3, we develop the anomaly
subspace detection algorithm. In Section 4, we demonstrate the ap-
plication of the proposed algorithm to automatic target detection,
and compare the results to those obtained by a competing method.

2. THE MULTI-SCALE GMRF MODEL

Let Y (s) denote an image, and letG = {G1, G2, ..., Gn} denote
a given set of multi-scale spatially invariant filters (e.g.scaling and
wavelet filters). We generate from the image a multi-scale image,
Y, by applying the filters to the imageY and concatenating the
results in the third dimension:

Yi = Y ∗Gi , i = 1, ..., n (1)

Y(s) = [Y1 (s) , Y2 (s) , ..., Yn (s)] (2)

where∗ denotes 2-dimensional convolution. The resultY is a 3-
dimensional representation of the image, thus each pixel is now
transformed to a vector. The Karhunen-Loéve transform (KLT)
can be applied toY(s), for generating a multi-scale image,T(s),
with independent layers.T(s) hasp layers representing the topp
independent components ofY(s). Let K denote a matrix whose
columns are the topp eigen vectors of the covariance matrix of
Y(s). T(s) is then given by:

T(s) = KTY(s). (3)

We assume that there is a set of filters,G, such that each image
layer,T`(s), can be modeled as a GMRF with a different set of
parameters. We denote the weight coefficient estimated for neigh-
bor r ∈ R, and for thè -th layer ofT(s) by θ`(r), and the inno-
vations process of thè-th layer byε`(s). As a GMRF,T`(s) is
given by:

T`(s) =
X
r∈R

θ`(r)T (s + r) + ε` (s) . (4)

Let ρ2
` = E{ε2

`(s)} denote the variance of the innovations of the
`-th layer. Woods [2] showed that the innovations process of a
GMRF is spatially correlated with covariance given by:

E {ε` (s) ε` (s + r)} =

8<: ρ2
` , if r = (0, 0)
−θ`(r)ρ

2
` , if r ∈ N

0 , otherwise.
(5)



T(s) is then given by the following equation:

T(s) =
X
r∈R

ΘrT (s + r) + ε (s) (6)

whereΘr is the following diagonal matrix:

Θr = diag(θ1 (r) , θ2 (r) , ..., θp (r)) (7)

and" (s) is a vector of the innovations in pixels in the different
layers ofT (s):

" (s) = [ε1 (s) , ε2 (s) , ..., εp (s)]T. (8)

Various methods for GMRF model estimation were developed
over the years,e.g., [5], [1], [7], [8], [9]. A computationally effi-
cient method for the GMRF model estimation is the least squares
method, described in details in Hazel [5]. The multi-scale GMRF
model estimation is based on the estimation of the GMRF param-
eters for each layer ofT(s), using the least squares method. The
estimate ofΘr can be directly obtained from the least squares es-
timates ofθ` (r) for r ∈ R and` = 1 . . . p. Subsequently, we can
estimate the innovations process (prediction error),b" (s), by:

b" (s) = T(s)−
X
r∈R

cΘrT (s + r). (9)

3. ANOMALY DETECTION

In this section, we introduce an anomaly subspace detection
method based on a MSD and the multi-scale GMRF model intro-
duced in the previous section.

Scharf and Friedlander [6] formulated a MSD for the general
problem of detecting subspace signals in subspace interference
and additive white Gaussian noise. Here, the anomaly detection
is based on a statistical model which better describes the back-
ground clutter and the noise. We formulate a modified MSD for
detection of subspace signals in subspace interference and additive
noise which follows the multi-scale GMRF model, proposed in the
previous section.

Let {hj |j = 1, . . . , u} and{sk|k = 1, . . . , v} denote two
sets of image chips, which span the signal and interference sub-
spaces of imageY , respectively. The image chips are all of the
same size:Nx ×Ny pixels, which is usually much larger than the
size of the neighborhoodR. It should be large enough for contain-
ing shapes which span the signal and interference subspaces.

We assume that imageY contain mainly noise, which follows
the multi-scale GMRF model, and that the target and interference
signals are rare. LetDp denote an operator which calculates the
prediction error,b"(s), of the multi-scale GMRF model withp in-
dependent components.Dp is defined by using (1), (3), and (9), as
follows:b"(s) = [bε1 (s) , bε2 (s) , ..., bεp (s)]T = DpY (s) =

= KTY(s)−
X
r∈R

ΘrK
TY(s + r). (10)

Let n`(s) denote the column stack ordering of anNx × Ny

pixels image-chip ofbε` arounds:

n`(s) = vec({bε`(t)|t ∈ [Nx×Ny image chip arounds]}). (11)

We defineH` andS` as follows:

H` = [vec([Dph1]`) vec([Dph2]`) ... vec([Dphu]`)]

S` = [vec([Dps1]`) vec([Dps2]`) ... vec([Dpsv]`)]

(12)

where[·]` denotes thè-th layer of the 3-dimensional data.
Let 〈H`〉 denote the signal subspace, spanned by the columns

of matrix H` and let 〈S`〉 denote the interference subspace,
spanned by the columns of matrixS`. We denote the additive noise
by b`. The problem is to determine whether the sample vectorn`

contains a target signal. The target signalx` can be described as a
linear combination of the columns ofH` i.e., x` = H` `, where
 ` is a vector of coefficients. The interference signal is described
similarly, using the matrixS` and the coefficients vector�`. Con-
sidering the detection problem, we define two hypotheses,H0 and
H1 which indicate, respectively, absence and presence of target
signal in the vectorn`:

H0 : n` = S`�` + b`

H1 : n` = H` ` + S`�` + b`.
(13)

Let PS` denote the projection of a vector onto the subspace〈S`〉:

PS`n`(s) = S`(S`
TS`)

−1S`
Tn`(s) (14)

and let PH`S` denote the projection of a vector onto the sub-
space〈H`S`〉, spanned by the columns of the concatenated ma-
trix
�
H` S`

�
. The maximum likelihood estimates of the additive

noise vector,b`, underH0 and underH1 are denoted bybb`
H0 andbb`

H1 , respectively. These estimates are obtained by subtracting
from n` the components which lie in the signal and interference
subspaces as follows:

bb`
H0 = (I − PS`)n`bb`
H1 = (I − PH`S`)n`

(15)

b` is the innovations process of a GMRF and therefore is normally
distributed with zero mean. We denote the covariance matrix ofb`

byρ2
`Φ`, whereρ2

` is the variance ofb`. ρ2
`Φ` is obtained by using

(5).
The detection problem can be formulated as a generalized like-

lihood ratio test (GLRT) betweenH0 andH1. The log-likelihood
ratio,L`, calculated based on the`-th layer of the innovations pro-
cess is given by:

L`(s) = 2ln

�
Pr(b`(s)|H0)

Pr(b`(s)|H1)

�
=

= 2ln

266664
exp

 h
Φ
−1/2
`

bb`
H0

(s)
i2

2ρ2
`

!
exp

 h
Φ
−1/2
`

bb`
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`
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(16)



The log-likelihood ratio, based onp layers of the innovations pro-

cess is given byL(s) =
pP̀
=1

L`(s) as follows:

L (s) =

=

pX̀
=1

1

ρ2
`

�


Φ−1/2
`

bb`
H0(s)




2

2
−



Φ−1/2

`
bb`

H1(s)



2

2

�
=

=

pX̀
=1

1

ρ2
`

[Φ
−1/2
` n`(s)]

T (PH`S` − PS`) [Φ
−1/2
` n`(s)].

(17)

The signal-to-noise ratio (SNR) is the ratio between the signal and
the noise in terms of intensity. We define the SNR as the second
power of the ratio between the signal, which do not lie in the in-
terference subspace, and the standard deviation of the noise, as
follows:

SNR =

pX
l=1

1

ρ2
`

x`
T[I − PeS`

]x`. (18)

Let u denote the rank of the signal subspace and letq = up. L is
a sum of squared independent normally distributed variables and
therefore is chi-square distributed withq degrees of freedom, as
follows:

L ∼
�

χ2
q (0) , underH0

χ2
q (SNR) , underH1.

(19)

Under hypothesisH1, the non-centrality parameter of the chi-
square distribution ofL is equal to the SNR [6]. The decision rule
is based on thresholding the log-likelihood ratio using the thresh-
old η as follows:

ξ =

�
H0 if L ≤ η
H1 if L > η.

(20)

Given (19) and (20), the probabilities of false-alarm and detection
are:

PFA = 1− P
�
χ2

q (0) ≤ η
�

(21)

PD = 1− P
�
χ2

q (SNR) ≤ η
�
. (22)

Figure 1 presents a flow chart with the main steps of the algorithm:

1. Generation of a Multi-Scale Representation:The image
Y is filtered by a set of spatial filters,G, using (1), in order
to create its multi-scale representation,Y.

2. Independent Components Analysis:The KLT is applied
to the vectors of the multi-scale representation,Y, using
(3). The result is a multi-scale representation,T, with in-
dependent layers.

3. Estimation of the Innovations Process:The GMRF pa-
rameters set is separately estimated for each layer ofT. The
sample innovations,bε`(s), are calculated for each layer,`,
of T using (10) and the estimated parameters.

4. Matched Subspace Detector:S` and H` are calculated
using (12). A MSD is formed and the log-likelihood ratio,
L, is calculated for each pixel using (17).

5. Decision Rule (Thresholding):The decision rule given in
(20) is applied to the log-likelihood ratio,L, in order to de-
termine whether a pixels belongs to a target. The threshold,
η, is determined by the admissible false alarm rate (FAR)
using (21).
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Fig. 1. Flow chart of the proposed algorithm implementation.

4. EXPERIMENTAL RESULTS

In this section, we present the results of applying the proposed
model and algorithm to synthetic images of airplanes on cloudy
background. The example demonstrate the robustness and flexi-
bility of the algorithm.

Kashyap and Chellappa [1] proposed a method for synthetic
generation of images which follow the GMRF model. The method
is based on an expression of the GMRF model in terms of white
noise. The synthetic cloudy background is generated based on this
method:

1. Three random images are generated based on the GMRF
model, using three different sets of parameters.

2. A weighted sum of the three images is calculated. The re-
sult contains several periodical patterns with different pe-
riod lengths.

3. A small airplane image is planted in the center of the back-
ground image.

Figure 2 shows examples of target detection in synthetic im-
ages using the proposed anomaly detection algorithm. Figure 2(a)
presents two images of airplanes on synthetic cloudy sky back-
ground. A multi-scale representation of each image is obtained by
applying undecimated wavelet transform with 2 scale levels to the
image. Accordingly, the layers of the multi-scale representation
are the result of convolving the image with the wavelet basis im-
ages. We employ a signal subspace that is constructed from the
span of 4 image chips of11× 11 pixels. The image chips contain
bar shapes in different orientations:0◦, 45◦, 90◦, and135◦ which
resemble the fuselage of airplane targets. Figure 2(b) shows the
likelihood ratios (degree of anomality) calculated using (16) for
the images in Fig. 2(a). The targets, marked by circles, are detected
by thresholding the likelihood ratio. The threshold is determined



(a)

(b)

Fig. 2. (a) Synthetic images of airplanes on cloudy sky back-
grounds ; (b) likelihood ratios obtained by the proposed anomaly
detection algorithm. The detected targets are marked by circles.

by the admissible level of the FAR. The example demonstrates
the robustness of the algorithm in presence of different patterns
of background. The image chips which span the signal subspace
(target subspace) are simple and generally do not require detailed
information about the targets.

In order to demonstrate the performance of the proposed algo-
rithm, we compared its results with those of competing methods,
by applying them to the same synthetic images. The competing
methods examined in this section employ a conventional GMRF
model. Furthermore, the target detection is carried out as follows:

Method I: A single hypothesis scheme is applied to the estimated
innovations process for the detection of regions in the im-
age, which appear unlikely with respect to its normal distri-
bution [5].

Method II: A MSD is applied to the estimated innovations pro-
cess.

Figure 3(a) presents the results ofMethod I, applied to the syn-
thetic images in Fig. 2(a). The results are noisy and the targets can
not be distinguished from the background. Figure 3(b) shows the
results ofMethod II applied to the synthetic images in Fig. 2(a).
The likelihood ratios reveal the targets, which are almost unnotice-
able by a human viewer due to their weak signatures. The results
obtained byMethod II seem to be noisier compared to the results
of the proposed method. Using (18), we calculated the SNRs ob-
tained byMethod II and the proposed method for the images in
Fig. 2(a). The results show significant improvement: the SNRs
obtained for the left image and the right image byMethod II are
30dB and 21dB respectively, while the SNRs obtained by the pro-
posed method are 33dB and 27dB.

5. CONCLUSION

We have introduced a multi-scale GMRF model and a correspond-
ing anomaly subspace detection algorithm. The proposed model
is based on a multi-scale representation of the image and ICA.
The detection is carried out by applying MSD to the innovations
process of the estimated multi-scale GMRF. The MSD incorpo-
rates the availablea priori information about the targets into the

(a)

(b)

Fig. 3. A comparison between detection methods, applied to the
images in Fig. 2(a). (a) Result ofMethod I ; (b) Result ofMethod
II . The images in (a) seem to have higher false alarm rate (FAR)
than those in (b).

detection process and thus improves the detection performance
compared to single hypothesis tests. The experimental results
demonstrated the advantage of the proposed method over compet-
ing methods.
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