Electronics
Computers
Communications

Andrew and Erna Viterbi Faculty of Electrical Engineering

Time Varying Carrier Frequency Offset Estimation in Multicarrier Underwater Acoustic Communication

Gilad Avrashi

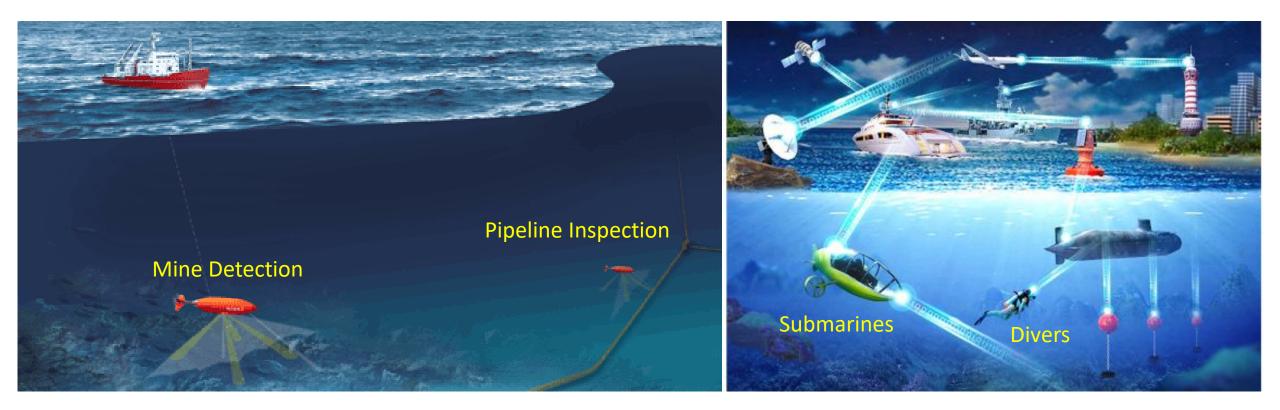
Supervised by Prof. Israel Cohen and Dr. Alon Amar

Contents

- Introduction
- Signal Space Estimation
- Pilot Design Optimization
- Time-Varying CFO Estimation
- Conclusions

Introduction

Why underwater communications?

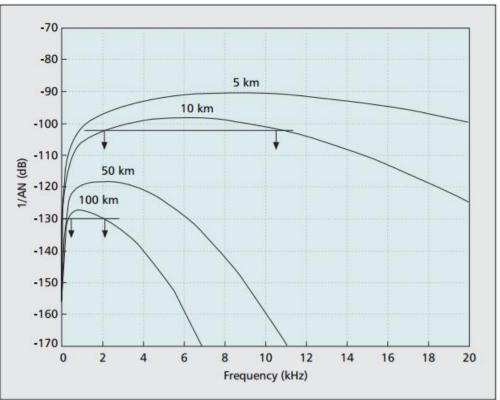


Autonomous Underwater Vehicles

Manned Vehicles

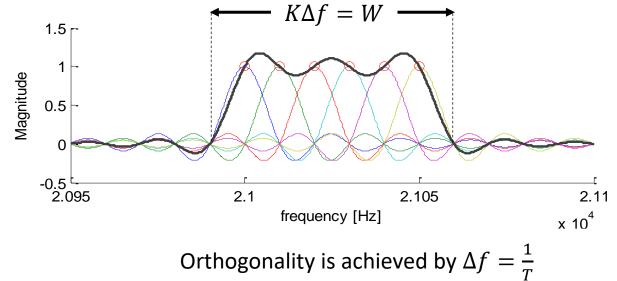
Challenges of Underwater Communications

- EM signals are attenuated quickly in the UW medium → pressure waves (sound) have been chosen for long range communications
- Sound waves characteristics:
 - Propagation speed: 1500 m/s (times 200,000 slower than EM waves!)
 - Frequency dependent losses
 - Frequency related ambient noise



Orthogonal Frequency Division Multiplexing

- The comm. bandwidth is divided into sub-carriers
- Each subcarrier is modulated to carry a digital communication symbol
- Pros:
 - Easy to implement using FFT operations
 - Robustness to frequency selective channels
 - Simple channel equalizer
- Cons:
 - Very sensitive to frequency shifts
 - High peak-to-average power ratio (PAPR)

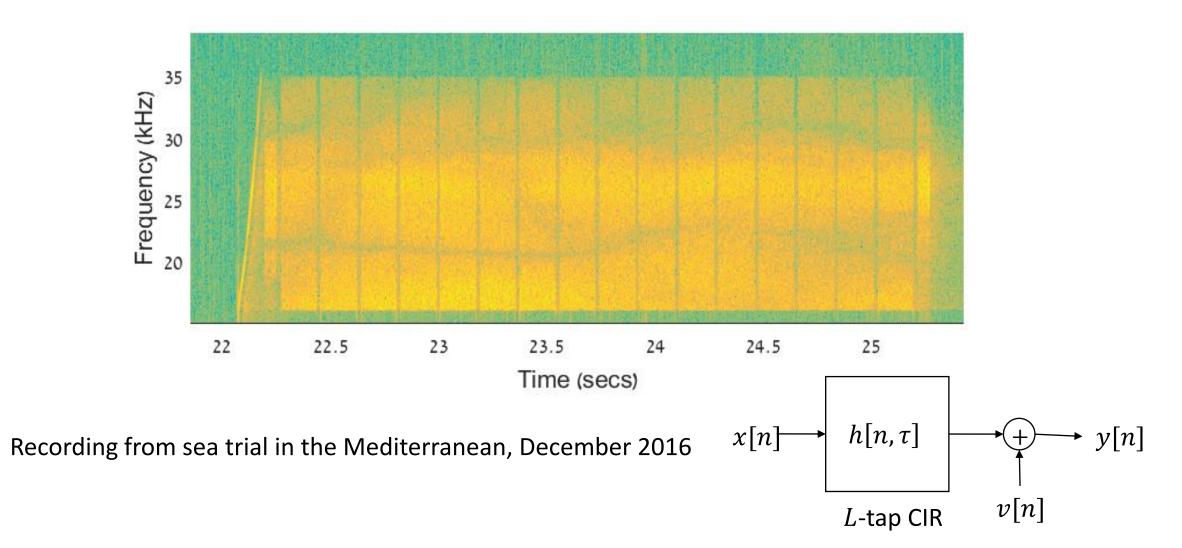


OFDM modulation

The baseband OFDM signal:

$$x[n] = g[n] \sum_{k=0}^{K-1} s[k]e^{j2\pi(\frac{n}{W})f_k} = g[n] \sum_{k=0}^{K-1} s[k]e^{j2\pi(\frac{n}{W})k\Delta f} = g[n] \sum_{k=0}^{K-1} s[k]e^{\frac{j2\pi nk}{K}} = \frac{g[n]}{\sqrt{K}} \text{IDFT}\{s[k]\}$$
Information bits
b $\in \{0,1\}^{2K \times 1}$
b $\in \{0,1\}^{2K \times 1}$
c $\sum_{k=0}^{K} e^{CK \times 1}$
c $\sum_{k=0}^$

Sea Trial OFDM Signal

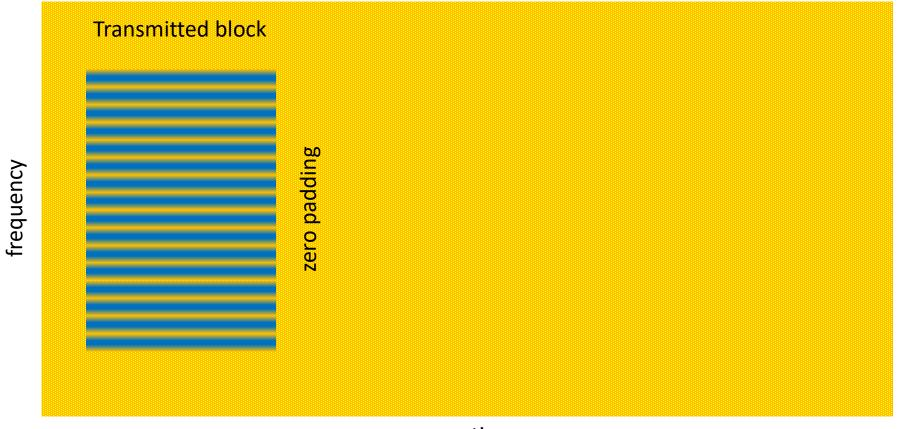


Research Goal

Develop a carrier frequency offset estimator for underwater acoustic OFDM modems.

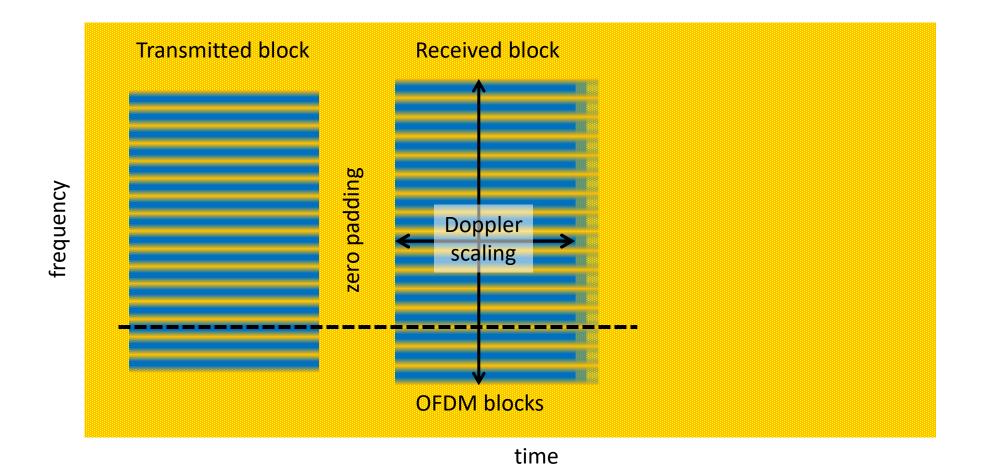
The solution is required to be computationally efficient and practical for the underwater acoustic channel.

Multicarrier UAC Effects

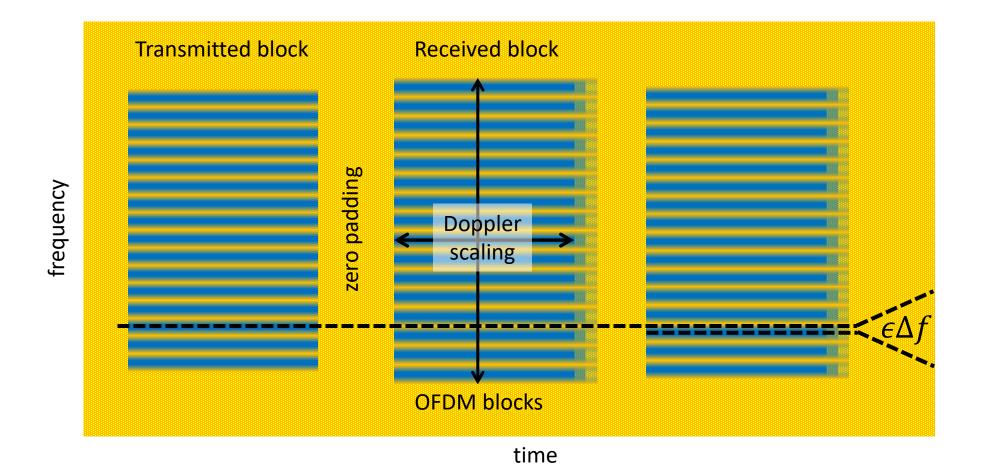


time

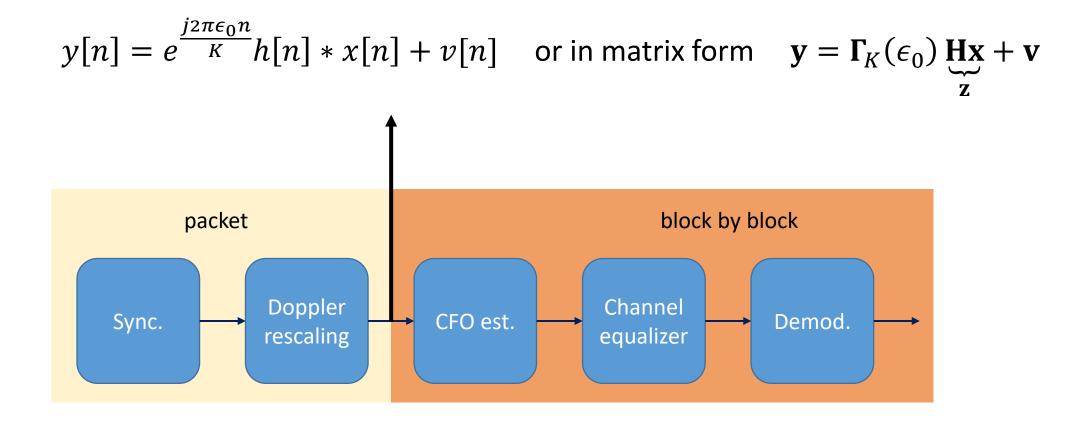
Multicarrier UAC Effects



Multicarrier UAC Effects



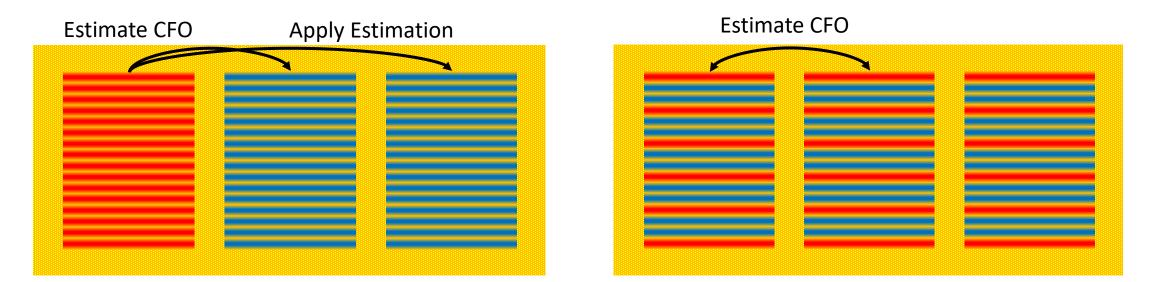
Received Signal Model Li et al. '08



Radio Frequency Approaches

Training blocks with periodic characteristics (Classen & Meyer '94)

Block to block pilot signal crosscorrelation (Schmidl & Cox '97)

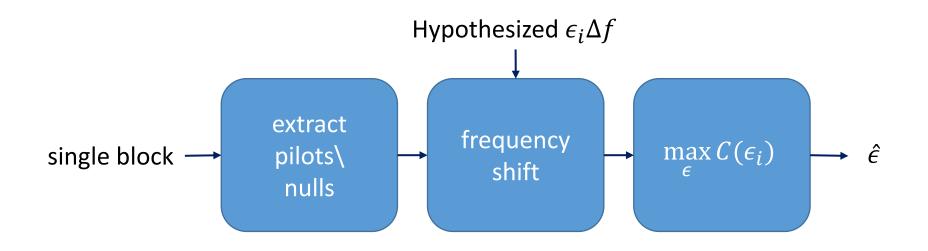


In UAC – CFO varies between adjacent blocks

UAC Approaches

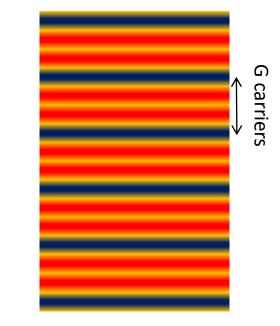
Null Carriers Minimum variance (Li et al. '08)

Pilot aided Maximum power (Li et al. '06)



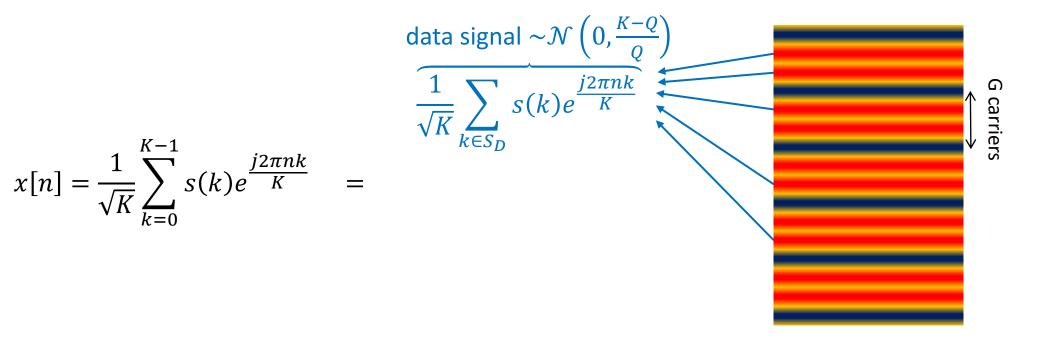
Requires exhaustive grid search

Pilot Based Estimation

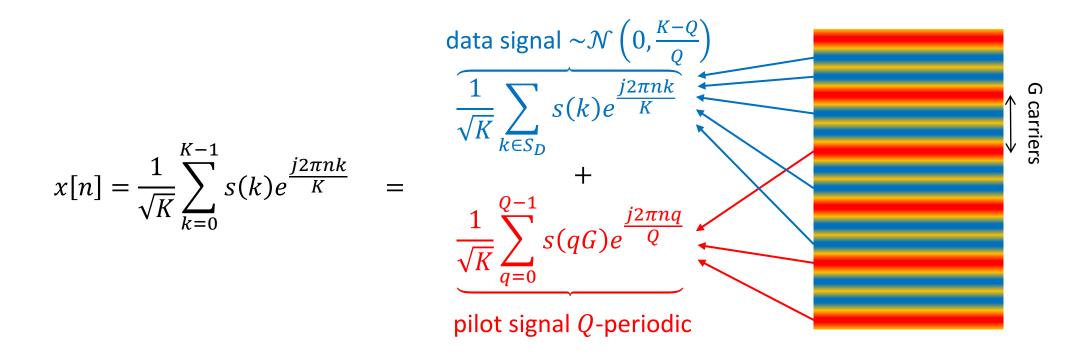


$$x[n] = \frac{1}{\sqrt{K}} \sum_{k=0}^{K-1} s(k) e^{\frac{j2\pi nk}{K}}$$

Pilot Based Estimation



Pilot Based Estimation



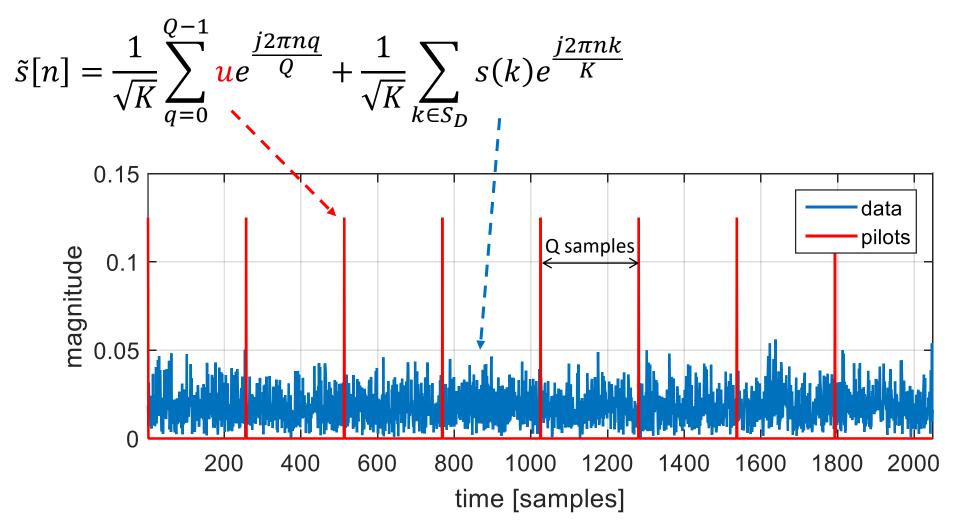
Idea: Use correlation between periods of the pilot signal

<u>Problem</u>: Low "SNR" – Pilot to Data Ratio (PDR)

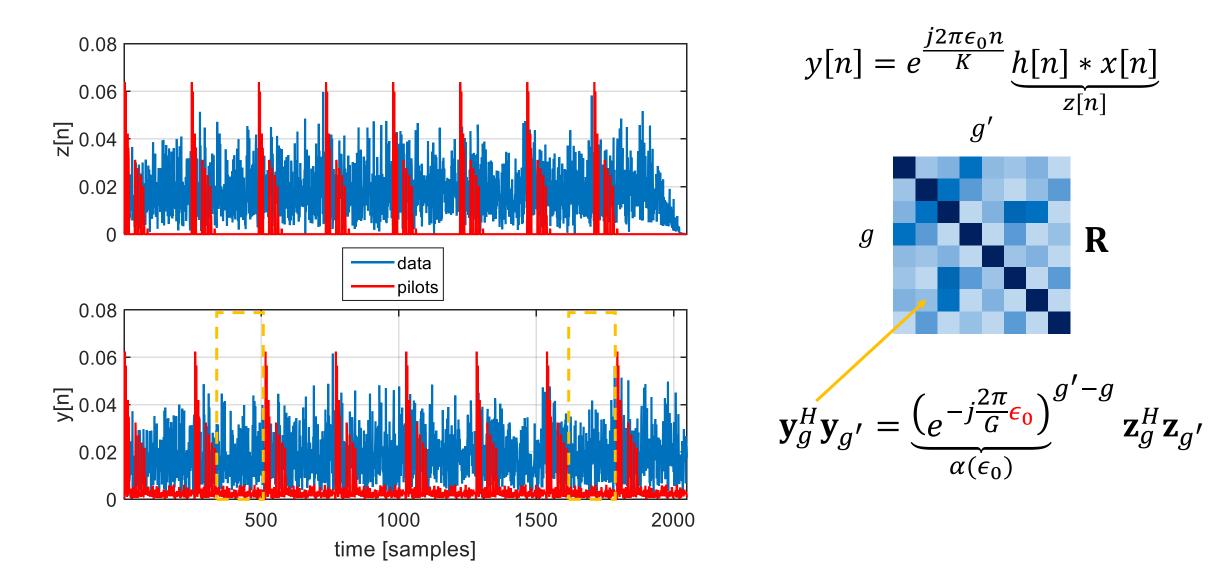
Solution: Design pilot signal with "Good" auto-correlation

Best auto correlation: identical pilots

Amar, Avrashi, Stojanovic '16



Exploiting Inter-Segment Correlations



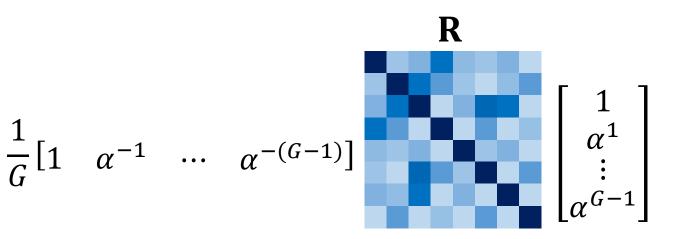
Eigen Value Decomposition

The cost function in matrix formulation We look for $\hat{\epsilon}$ that minimizes (maximizes)

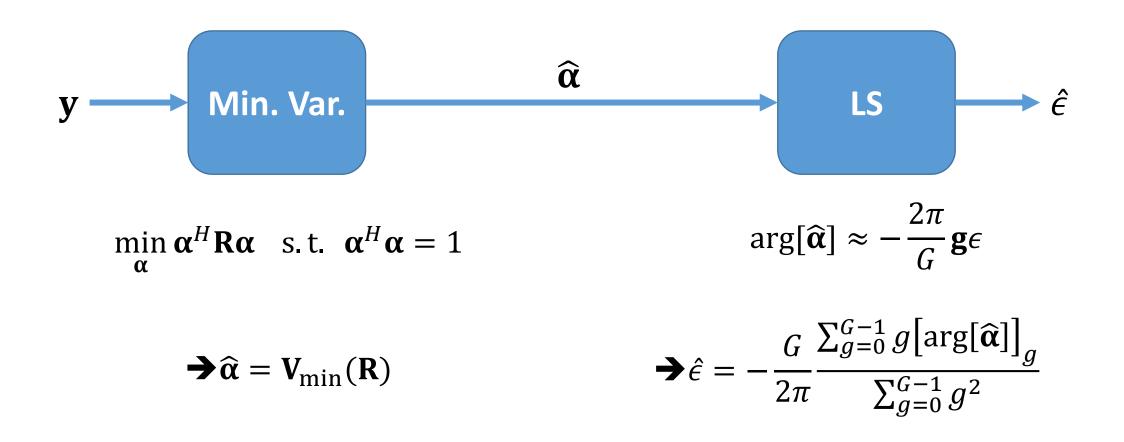
 $l = \boldsymbol{\alpha}(\epsilon)^H \mathbf{R} \boldsymbol{\alpha}(\epsilon)$

Under two constraints:

- $\|\boldsymbol{\alpha}\| = 1$
- $\arg(\alpha) \propto \epsilon$



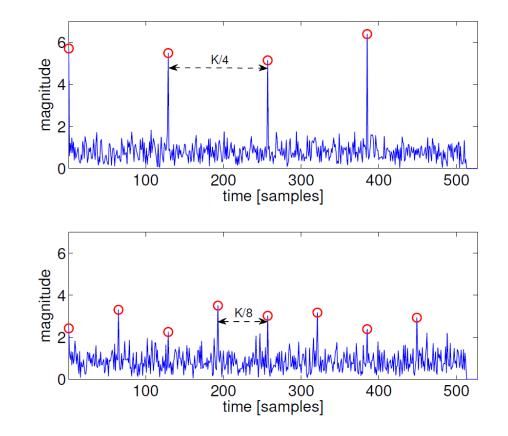
EVD estimator



Decompose R \rightarrow find the eigenvector of the smallest EV \rightarrow extract $\hat{\epsilon}$

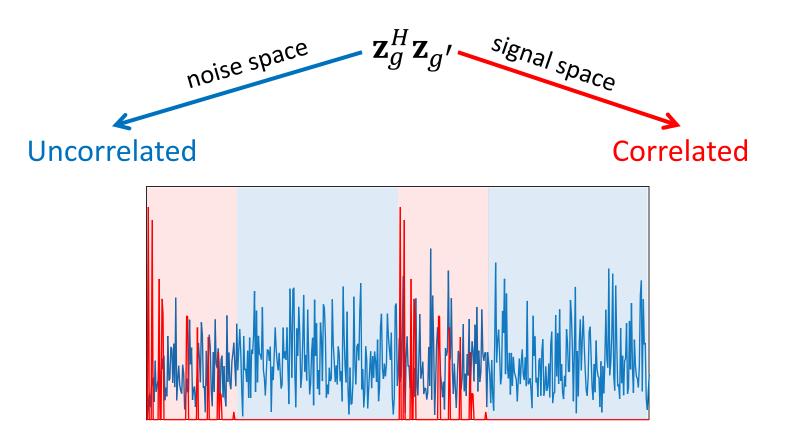
Research objectives

- The EVD-based estimator has two drawbacks:
 - High PAPR
 - Requires constant CFO during the block
- **Our goal**: Propose a CFO estimator for UAC with the following characteristics:
 - Low complexity
 - Negligible PAPR
 - Adjustable for time-varying channels



Signal Space Estimation

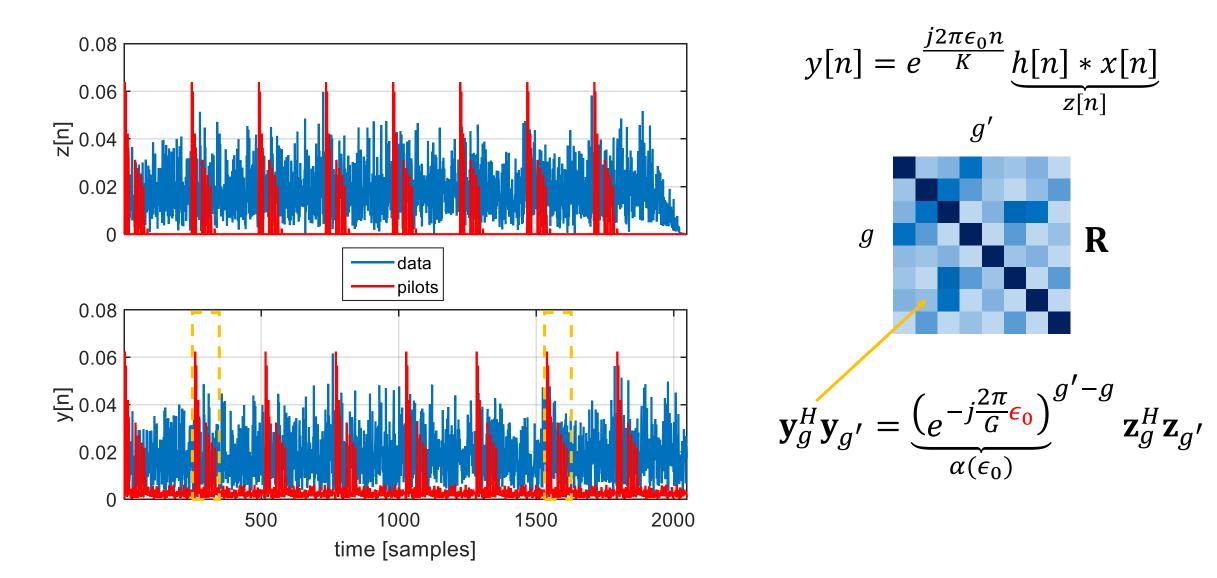
Two sides of the same coin



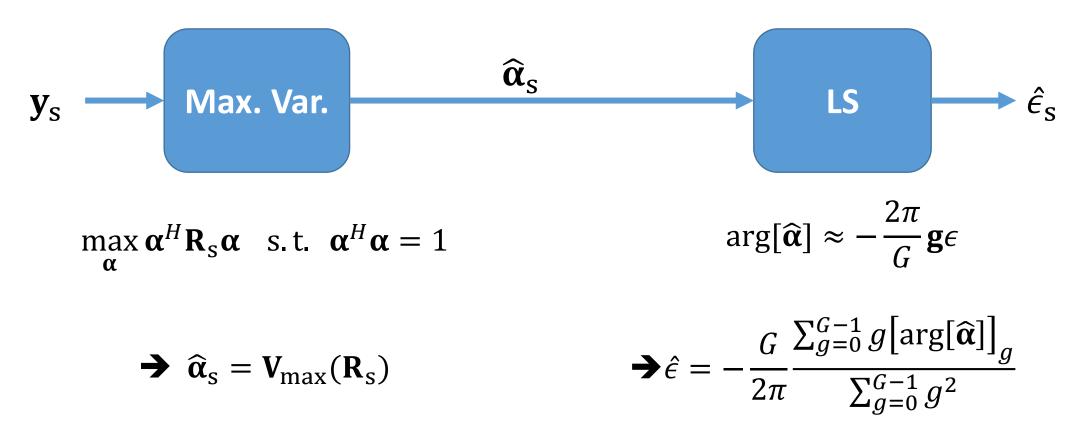
array processing interpretation

Steering ϵ in the **noise**\signal space to achieve **lowest**\highest SNR

Exploiting Inter-Segment Correlations

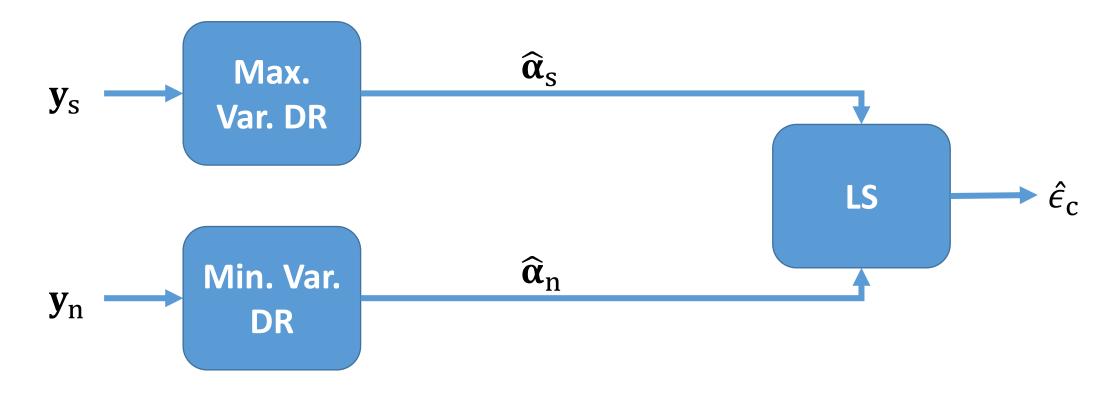


EVD in Signal Space



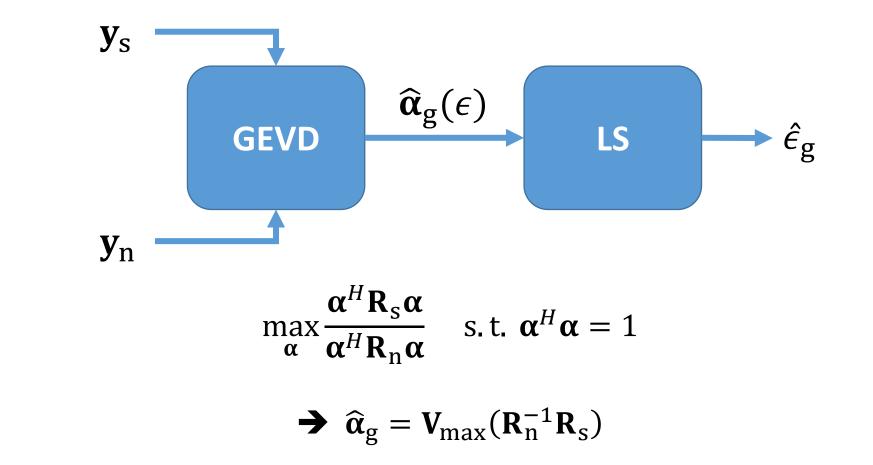
Decompose $R_s \rightarrow$ find the eigenvector of the largest EV \rightarrow extract $\hat{\epsilon}$

Combined LS estimate



 $\hat{\epsilon}_{\rm c} = \beta \hat{\epsilon}_{\rm n} + (1 - \beta) \hat{\epsilon}_{\rm s} , \qquad 0 \le \beta \le 1$

Generalized EVD



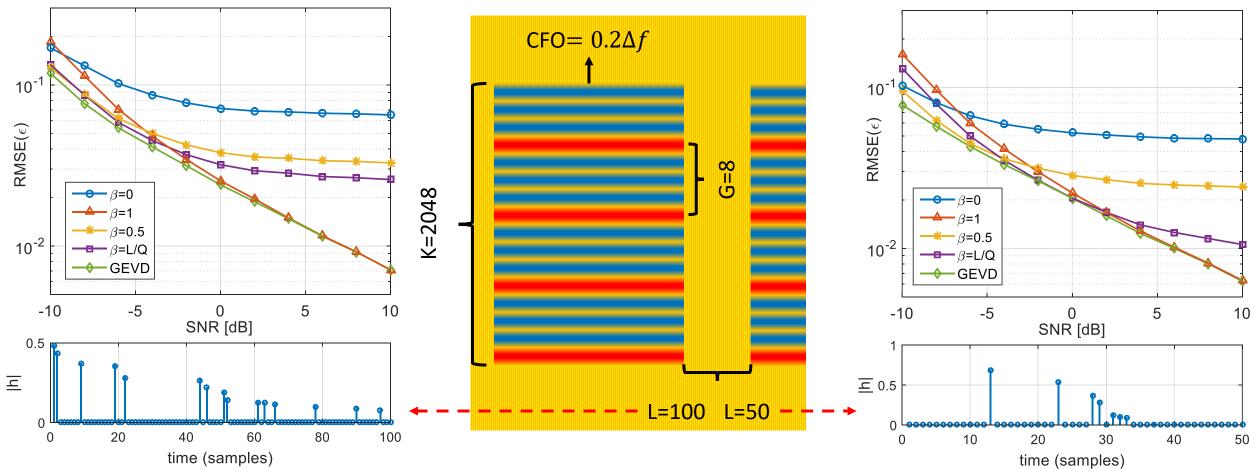
Decompose $\mathbf{R}_n^{-1}\mathbf{R}_s \rightarrow \mathbf{find}$ the eigenvector of the largest EV $\rightarrow \mathbf{extract} \hat{\boldsymbol{\epsilon}}$

Computational Complexity

Method	Complexity
Grid Search	$\mathcal{O}(K\sqrt{K})$
Noise Space EVD	$\mathcal{O}(G^2(Q-L)) = \mathcal{O}(KG)$
Signal Space EVD	$\mathcal{O}(G^2L)$
Combined LS	$\mathcal{O}(G^2 \max\{Q - L, L\})$
Generalized EVD	$\mathcal{O}(G^2 \max\{Q - L, L\})$

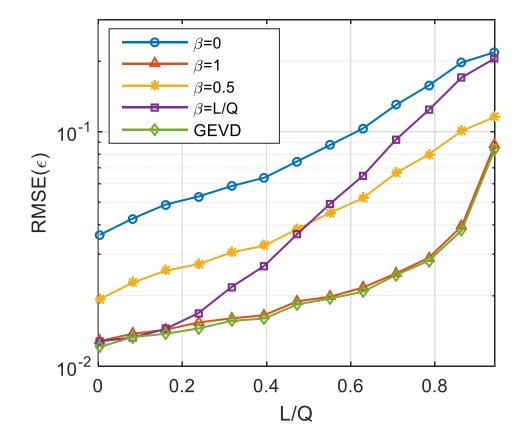
RMSE vs SNR

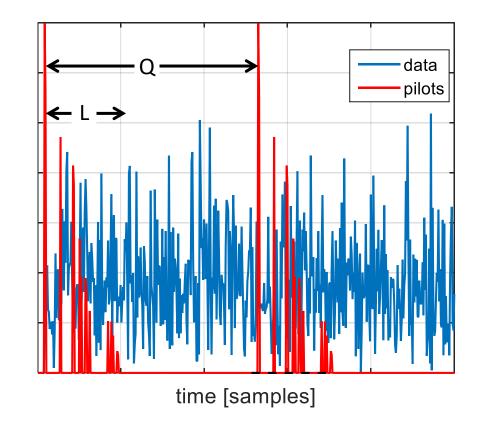
Long Delay Spread



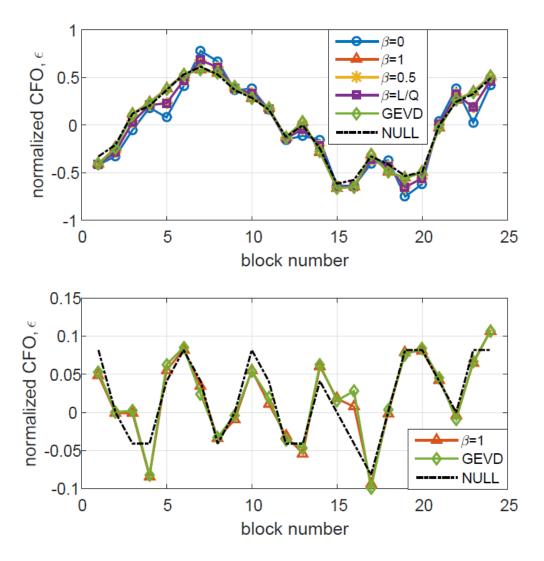
Short Delay Spread

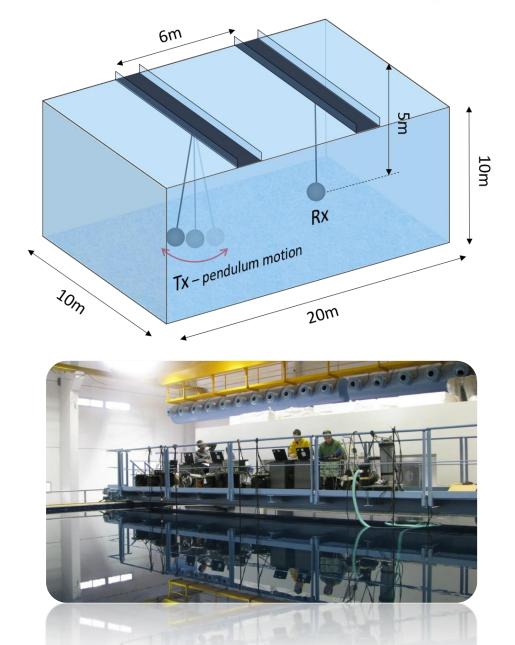
Effect of Delay Spread





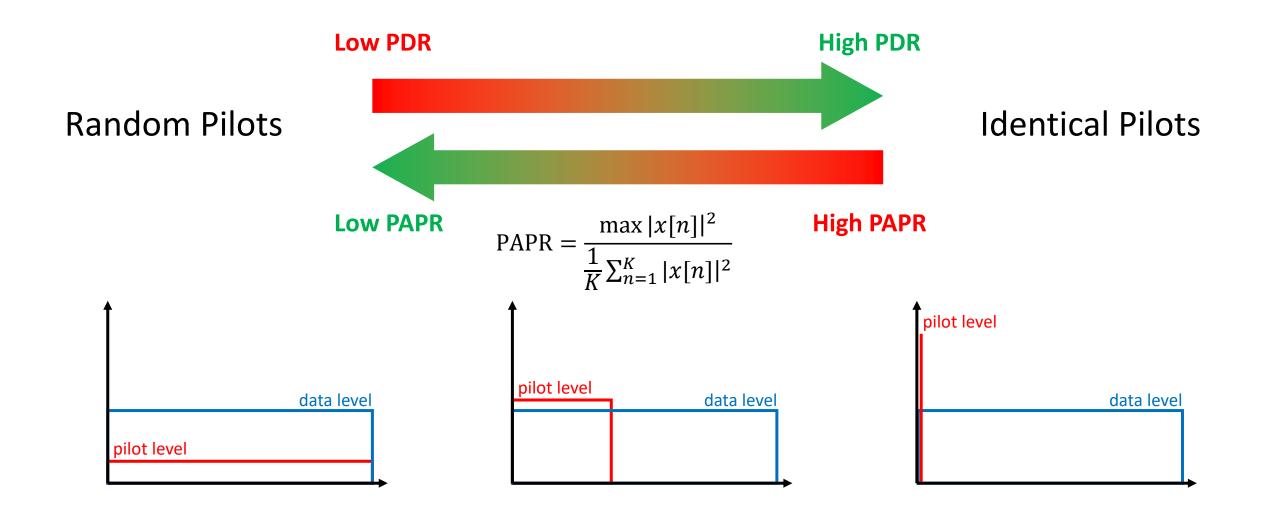
Pool Trial



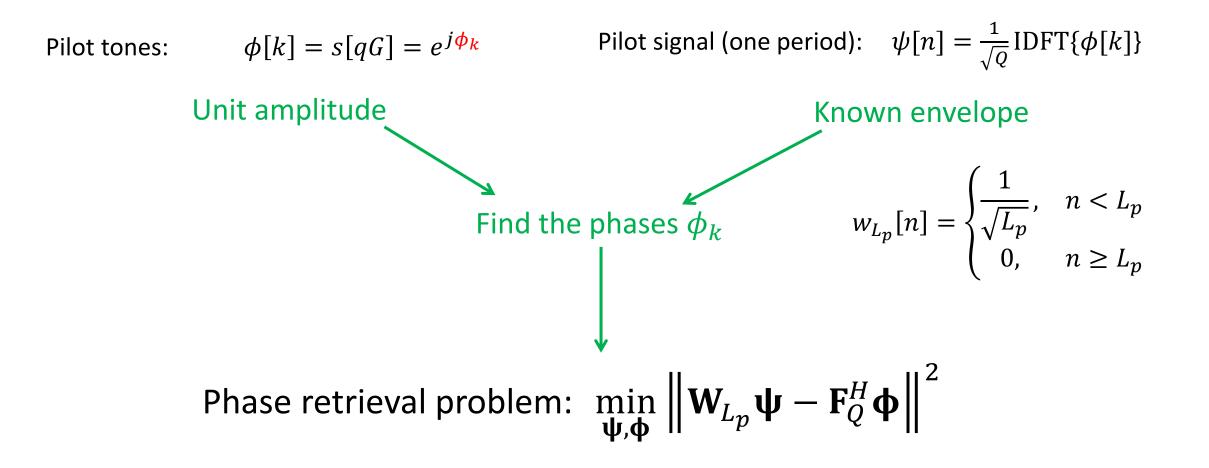


Pilot Design Optimization

PDR and PAPR tradeoff



Proposed pilot design formulation



Pilot design – generalized GSA algorithm

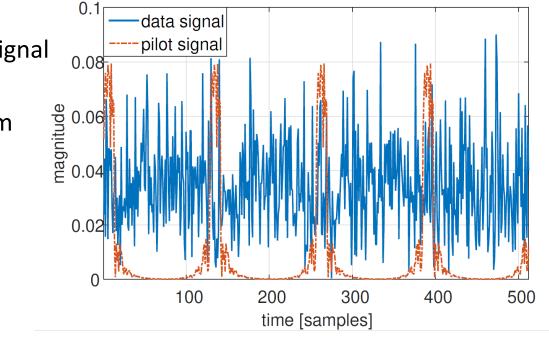
Initialize $\phi_0 = \operatorname{rand}(Q, 1), J = \infty$ while $J > \eta$ do

 $\begin{aligned} \mathbf{\Psi}_{i} &= e^{j \ll [\text{IFFT}\{\mathbf{\Phi}_{i-1}\}]} \\ \mathbf{\Phi}_{i} &= e^{j \ll [\text{FFT}\{\mathbf{W}\mathbf{\Psi}_{i}\}]} \\ \varepsilon &= \||\text{IFFT}\{\mathbf{\Phi}_{i}\}| - \mathbf{w}\|^{2} \\ p &= \frac{\max |\text{IFFT}\{\mathbf{\Phi}_{i}\}|^{2}}{\frac{1}{Q}\sum_{n=1}^{Q} |\text{IFFT}\{\mathbf{\Phi}_{i}\}|^{2}} \\ J &= \alpha\varepsilon + \beta p \end{aligned}$

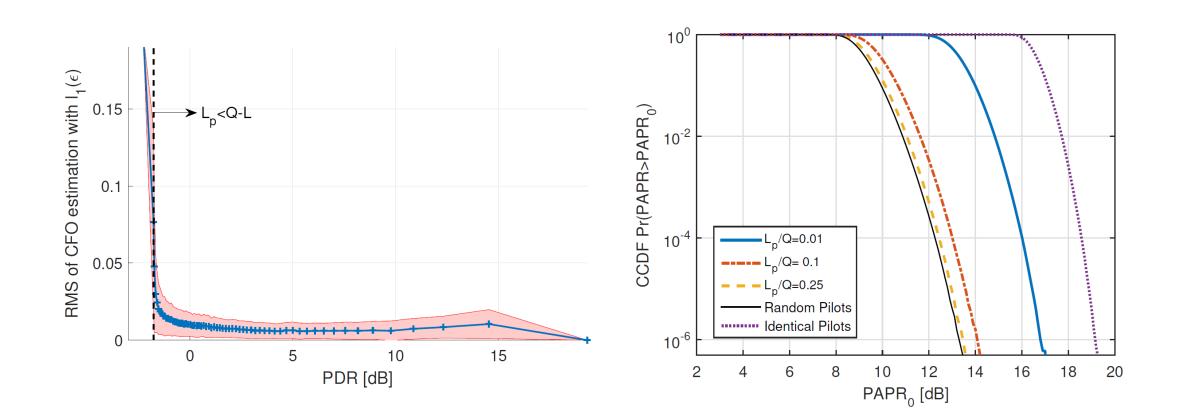
end while

return $\mathbf{\Phi}_i$

time domain pilot signal pilot tones envelope error norm PAPR



Simulation results



Time-Varying CFO Estimation

How can we capture TV-CFO?

Phases accumulated within 1 sub-segment duration $\mathbf{R}(\epsilon, g) \text{ becomes } \mathbf{R}(\epsilon, g, n):$ $\mathbf{R}_{g,g'} = \mathbf{y}_g^H \mathbf{y}_{g'} = \mathbf{z}_g^H \mathbf{\Gamma}_g^H(\epsilon, n) \mathbf{\Gamma}_{g'}(\epsilon, n) \mathbf{z}_{g'}$ $\mathbf{\Gamma}_g^H(\epsilon, n) \mathbf{\Gamma}_{g'}(\epsilon, n) \text{ is a diagonal matrix}$ Phases accumulated within 5 sub-segment duration

For constant CFO the diagonal is $d_{g,g'} = \alpha_g^* \alpha_{g'}$

Polynomial Model

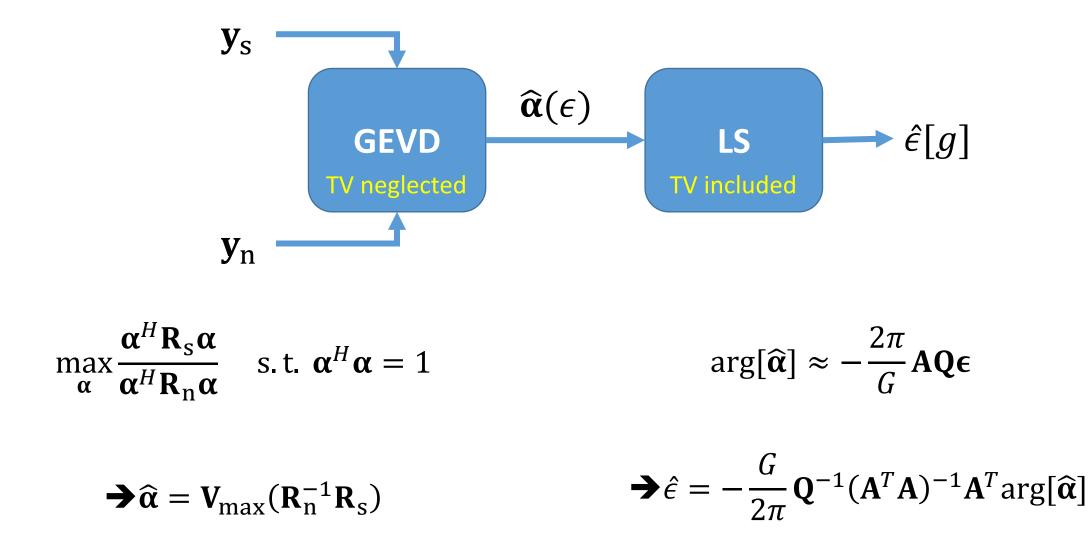
• Time variations are decomposed to its Taylor series:

$$\epsilon[n] = \sum_{l=0}^{\infty} \epsilon_l n^l$$
 , $0 \le n \le K - 1$

• The diagonal of $\Gamma_{g}^{H}(\epsilon, n)\Gamma_{g'}(\epsilon, n)$ becomes $d_{g,g'} = \alpha_{g}^{*} \exp\left\{\frac{j2\pi}{K}\sum_{l=1}^{\infty}\epsilon_{l}[r_{l}(n, g') - r_{l}(n, g)]\right\}\alpha_{g'}$

$$\alpha_g = \exp\left\{\frac{2\pi}{G} \sum_{l=1}^{G-1} g^l Q^{l-1} \epsilon_{l-1}\right\} \qquad r_{l(n,g)} = \sum_{k=1}^{l-1} {l \choose k} n^{l-k} (gQ)^k$$

Approximated solution



Piecewise-Constant Model

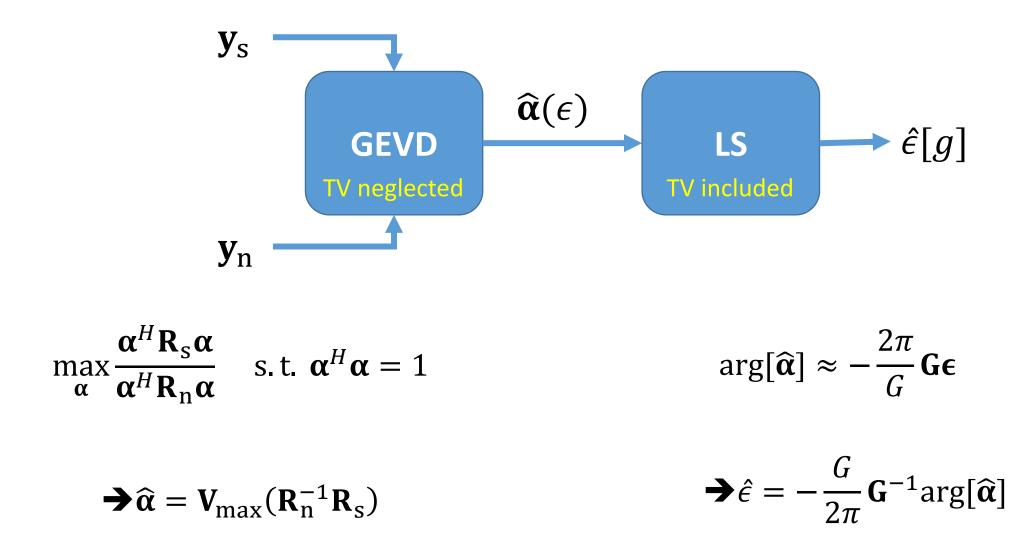
• Time variations are represented as piecewise-constant:

$$\epsilon[n] = \sum_{g=0}^{G-1} \epsilon_g u_g[n] \quad , \qquad 0 \le n \le K-1$$

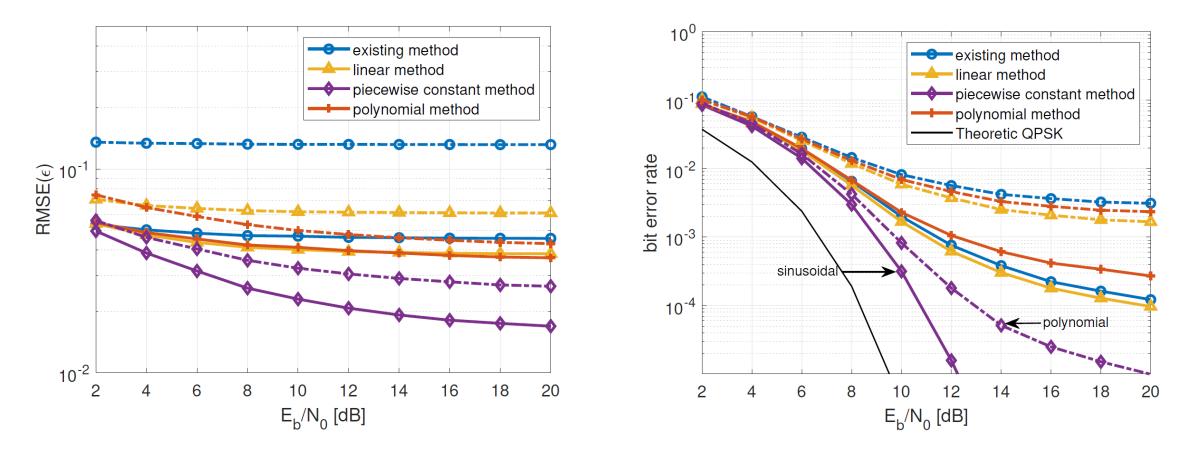
• The diagonal of
$$\Gamma_{g}^{H}(\epsilon, n)\Gamma_{g'}(\epsilon, n)$$
 becomes
 $d_{g,g'} = \alpha_{g}^{*} \exp\left\{\frac{j2\pi}{K}\sum_{l=1}^{\infty}(\epsilon_{g'} - \epsilon_{g})n\right\}\alpha_{g'}$, $\alpha_{g} = e^{\frac{2\pi}{G}\epsilon_{g}g}$

The time varying component is bounded by $\exp\left\{\frac{j2\pi}{K}|\epsilon_{g'}-\epsilon_g|Q\right\}$

Approximated solution



Simulation results



Polynomial model: $\epsilon[n] = \sum_{l=0}^{4} \frac{b_l}{K^l} n^l$, $b_l \sim U[-0.25, 0.25]$ Sinusoidal model: $\epsilon[n] = \Delta f \left[A_0 + A \sin \left(2\pi n \frac{f_{\sin}}{K} \right) \right]$, $A_0, A \sim U[-0.25, 0.25]$, $f_{\sin} \sim U[0.25, 2]$

Conclusions and Future Research

- A complete Tx-Rx scheme was suggested:
 - Reduced complexity closed form CFO estimation
 - Pilot design resolves the PAPR problem and makes the solution practical
 - Time-varying model allows deployment in harsh environments
- Future Research
 - Time Varying CIR
 - Combined pilots-data PAPR reduction
 - Proving the solution in sea trials
 - Model order estimation and channel sensing for the TV estimator