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Abstract—In this paper, we study the binaural noise-reduction
problem using an array of microphones. The widely linear (WL)
framework in the short-time-Fourier-transform (STFT) domain
is adopted. In such a framework, the microphone array signals
and binaural outputs are first merged into complex signals. These
complex signals are subsequently transformed into the STFT
domain. The WL estimation theory is then applied in STFT
subbands with interband correlation to form the optimal WL
Wiener filter, which exploits the noncircular properties of the
input complex signals to achieve noise reduction and meanwhile
to preserve the sound spatial realism. Finally, the time-domain
binaural output is reconstructed from the output of the WL
Wiener filter using the inverse STFT. The effectiveness of the
developed STFT-domain WL Wiener filter for binaural noise
reduction is justified using experiments.

I. INTRODUCTION

Binaural noise reduction is an important problem in many
applications e.g., hearing aids, virtual/augmented reality, 3D
gaming, teleconferencing, etc. It has received tremendous
research interest over the last few decades [1]–[10]. Unlike
the widely studied subject of monaural noise reduction, which
aims only at reducing noise, the objective of binaural noise
reduction consists of two aspects: noise reduction (to improve
either speech quality or intelligibility [11]) and preservation of
sound spatial information. To achieve this objective, a binaural
noise-reduction system generally takes multichannel (at least
two) inputs from an array of microphones and produces two-
channel outputs.

A straightforward way of achieving binaural noise reduction
is through the use of some monaural noise reduction tech-
niques to produce two outputs while some constraints between
the two outputs are applied to preserve the so-called sound
spatial cues [3]–[5]. But this method requires good estimation
of the spatial cues and preservation process is in general not
optimal. Recently, a widely linear (WL) filtering approach
was developed to achieve binaural noise reduction using two
microphones [6], [7]. It works in the complex domain by
combining both the stereo input and expected binaural output
signals into complex signals. Through this, the binaural noise
reduction problem is transformed into one of single-channel
noise reduction under the WL filtering framework. More
recently, this principle was extended to the case of multiple
microphones [8]. The WL filtering approach is proven to
be effective for binaural noise reduction. However, the time-
domain formulation and processing developed in [6]–[8] is

in general computationally very expensive. To make the im-
plementation more efficient, the time-domain framework was
extended to the short-time-Fourier-transform (STFT) domain
in [10], where coefficients from different STFT subbands are
assumed to be uncorrelated.

This paper is also concerned with the binaural noise-
reduction problem performed in the STFT domain. In contrast
with the previous work reported in [10], the contribution
of our paper lies in the following two aspects. First, we
show that with the WL model in the STFT domain, there
exists some relationship between certain subbands. Second,
a WL Wiener filter is developed that takes into account the
relationship between different subbands to achieve binaural
noise reduction. We will show how to derive the optimal WL
Wiener filter when interband relationship is taken into account.
The performance of the developed STFT-domain WL Wiener
filter is verified using experiments and comparison is made to
show the advantage of the WL Wiener filter in this paper over
its counterpart in [10].

II. PROBLEM FORMULATION

The signal model adopted in this paper is same as the one
used in [8]. Let us consider the scenario where a sound source
radiates a signal of interest in a reverberant and noisy acoustic
environment. We use a microphone array (with 2M sensors)
to capture the signal. Then, the output of each microphone is
written as

yr,m(t) = s(t) ∗ gr,m(t) + vr,m(t)

= xr,m(t) + vr,m(t), m = 1, 2, . . . , 2M, (1)

where s(t) is the unknown sound source signal, ∗ denotes
linear convolution, gr,m(t) denotes the room impulse response
from s(t) to the mth channel, and xr,m(t) = s(t)∗gr,m(t) and
vr,m(t) are the convolved speech and additive noise, respec-
tively, captured by the mth microphone. All the signals xr,m(t)
and vr,m(t) are assumed to be real, broadband, and zero
mean. Furthermore, it is assumed that the signals xr,m(t) are
uncorrelated with vr,m(t). By definition, xr,m(t) are assumed
to be coherent across the array, while vr,m(t) may be either
partially coherent or incoherent across the array.

To achieve binaural noise reduction, we need to simulta-
neously recover the speech signals at two of the 2M mi-
crophones. Without loss of generality, we choose to recover
xr,1(t) and xr,M+1(t). Following the principle in [6], [8],



we choose to work in the complex domain by merging the
real array outputs into complex signals so that the original
problem is converted to one of multiple-input-single-output
noise reduction. With the real signal model given in (1), the
complex signals used in this paper are formed as

yi(t) , yr,i(t) + jyr,M+i(t)

= s(t) ∗ gi(t) + vi(t)

= xi(t) + vi(t), i = 1, 2, . . . ,M, (2)

where j =
√
−1 denotes the imaginary unit, gi(t) = gr,i(t) +

jgr,M+i(t) is the complex acoustic impulse response for the
ith complex channel, xi(t) = xr,i(t) + jxr,M+i(t) is the
complex clean signal, and vi(t) = vr,i(t) + jvr,M+i(t) is the
complex additive noise. With the above complex signal model,
the binaural noise-reduction problem can now be restated
as: minimizing the effect of the noise term, vi(t), thereby
recovering the complex signal x1(t), including the spatial
information embedded in it.

As demonstrated in [6], [7], all the signals yi(t) are noncir-
cular complex random variables (CRVs). So, the WL filtering
theory needs to be used in order to recover x1(t) from the M
complex noisy signals yi(t).

In the STFT domain, we can rewrite (2) as

Yi(k, n) = Xi(k, n) + Vi(k, n), (3)

where Yi(k, n), Xi(k, n), and Vi(k, n) are respectively the
STFT coefficients of the complex signals yi(t), xi(t), and vi(t)
at frequency-bin k (with k = 0, 1, . . . ,K − 1 and K being
the total frequency bins) and time-frame n. Putting Yi(k, n),
i = 1, 2, · · · ,M , into a vector notation, we get

y(k, n) = x(k, n) + v(k, n), (4)

where y(k, n) ,
[
Y1(k, n) Y2(k, n) · · · YM (k, n)

]T
with T

standing for the transpose operator, and x(k, n) and v(k, n)
are defined analogously to y(k, n).

III. CORRELATION BETWEEN DIFFERENT STFT
SUBBANDS

In monaural noise reduction in the STFT domain, coeffi-
cients from different STFT subbands are assumed uncorrelated
either implicitly or explicitly and noise reduction at different
bands are typically processed independently. This is generally
true for real signals if the length of the fast Fourier transform
(FFT) is sufficiently large. The same assumption was adopted
in [10] for binaural noise reduction in the STFT domain with
the WL framework. However, with the signal model given
in (3), there exists certain relationship between the STFT
coefficients at the k and (K − k)th subbands [12], [13]. As a
matter of fact, it can be checked from (3) that

X∗
i (K − k, n) =

G∗
i (K − k)

Gi(k)
Xi(k, n), (5)

where the superscript ∗ stands for complex conjugation, and
Gi(k) is the STFT coefficient of gi(t). Therefore, both the
coefficients from the k and (K − k)th subbands should be

considered together in order to recover the clean speech at
the kth subband. To explore this relationship, let us define the
following signal vector:

y(k, n) ,
[

y(k, n)
y∗(K − k, n)

]
(6)

=

[
x(k, n)

x∗(K − k, n)

]
+

[
v(k, n)

v∗(K − k, n)

]
= x(k, n) + v(k, n),

where x(k, n) and v(k, n) are defined analogously to y(k, n),
respectively. It follows then that

x(k, n) = d(k)X1(k, n), (7)
x∗(K − k, n) = d′(K − k)X1(k, n), (8)

where

d(k) =

[
1
G2(k)

G1(k)
· · · GM (k)

G1(k)

]T
, (9)

d′(K − k) =

[
G∗

1(K − k)

G1(k)

G∗
2(K − k)

G1(k)
· · · G

∗
M (K − k)

G1(k)

]T
.

(10)

Combining (6), (7), and (8), we obtain

y(k, n) = d(k)X1(k, n) + v(k, n), (11)

where
d(k) ,

[
d(k)

d′(K − k)

]
. (12)

From the signal model (11), one can see that the binaural
noise-reduction problem now is changed into one of estimating
X1(k, n) from the complex signal vector y(k, n).

IV. STFT-DOMAIN WIDELY LINEAR FILTERING FOR
BINAURAL NOISE REDUCTION

The estimation of X1(k, n) from the complex signal vector
y(k, n) can be accomplished using the WL estimation theory
[14]–[16] as

X̂1(k, n) = hH(k, n)y(k, n) + h′H(k, n)y∗(k, n)

= h̃H(k, n)ỹ(k, n)

= h̃H(k, n)x̃(k, n) + h̃H(k, n)ṽ(k, n), (13)

where the superscript H denotes the conjugate-transpose op-
erator, h(k, n) and h′(k, n) are two complex finite-impulse-
response (FIR) filters both of length 2M ,

h̃(k, n) ,
[
h(k, n)
h′(k, n)

]
(14)

is a vector of length 4M , named as the augmented WL filter,

ỹ(k, n) ,
[
y(k, n)
y∗(k, n)

]
(15)

is the augmented noisy signal vector, also with a length of 4M ,
and x̃(k, n) and ṽ(k, n) are defined analogously to ỹ(k, n).

If we set h′(k, n) = 02M (where 02M is a 2M × 1
vector consisting of all zero elements) for any k and n, (13)



degenerates to the classical linear filtering framework [17],
[18]; however, this classical filtering process is not optimal
for noncircular signals [14].

From (13), one can see that X̂1(k, n) depends on the signal
vector x̃(k, n); but the desired signal at frequency-bin k and
time-frame n is X1(k, n) instead of the whole vector x̃(k, n).
To see how each element in x̃(k, n) contributes to the estimate
X̂1(k, n), let us first decompose X∗

1 (k, n) as

X∗
1 (k, n) = γ∗

X1
(k, n)X1(k, n) +X ′

1(k, n), (16)

where

X ′
1(k, n) = X∗

1 (k, n)− γ∗
X1

(k, n)X1(k, n), (17)

γX1(k, n) =
E[X2

1 (k, n)]

E[|X1(k, n)|2]
(18)

is the second-order circularity quotient [19] of X1(k, n), and
E[·] denotes the mathematical expectation. If γX1(k, n) = 0,
X1(k, n) is second-order circular; otherwise, X1(k, n) is non-
circular. The absolute value of γX1(k, n), which is between
0 and 1, quantifies the degree of noncircularity of X1(k, n);
a larger value of |γX1(k, n)| indicates that X1(k, n) more
noncircular. From (16), it can checked that

E[X ′
1(k, n)X

∗
1 (k, n)] = 0. (19)

Using (16), we can write x̃(k, n) as

x̃(k, n) = dX1
(k, n)X1(k, n) + x̃′(k, n)

= xd(k, n) + x̃′(k, n), (20)

where

dX1(k, n) ,
[

d(k)
γ∗
X1

(k, n)d∗(k)

]
=

E[x̃(k, n)X∗
1 (k, n)]

E[|X1(k, n)|2]
, (21)

xd(k, n) , dX1(k, n)X1(k, n), (22)

x̃′(k, n) ,
[

02M

X ′
1(k, n)d

∗(k)

]
. (23)

Now, substituting (20) into (13), we get

X̂1(k, n) = h̃H(k, n)[xd(k, n) + x̃′(k, n) + ṽ(k, n)]

= Xfd(k, n) +Xri(k, n) + Vrn(k, n), (24)

where Xfd(k, n) , X1(k, n)h̃
H(k, n)dX1(k, n) is the filtered

desired signal, Xri(k, n) , h̃H(k, n)x̃′(k, n) is called the
residual interference, and Vrn(k, n) , h̃H(k, n)ṽ(k, n) is
called the residual noise.

One can verify that the two vectors ỹ(k, n) and ỹ(K−k, n)
satisfy the following relation:

ỹ(K − k, n) = P ỹ(k, n), (25)

where

P =


0 0 0 IM
0 0 IM 0
0 IM 0 0
IM 0 0 0

 (26)

is the anti-diagonal matrix which has the properties of PT =
P and P2 = I4M , IM denotes the identity matrix of size
M ×M . Therefore, ỹ(K − k, n) is simply a permutation of
ỹ(k, n). It follows then that

Φỹ(K − k, n) = PΦỹ(k, n)P, (27)

where Φỹ(k, n) , E[ỹ(k, n)ỹH(k, n)] is the covariance
matrix of the noisy signal vector. The above relationship can
be used to reduce the complexity of the WL noise reduction
filter, which will become clear in the next section.

V. WIDELY LINEAR WIENER FILTER

Before deriving the optimal STFT-domain WL Wiener filter,
let us first define the subband mean-square error (MSE)
between the estimated and clean signals at the frequency-bin
k and time-frame n:

J(k, n) , E
[
|X̂1(k, n)−X1(k, n)|2

]
= E

[
|h̃H(k, n)ỹ(k, n)−X1(k, n)|2

]
. (28)

The WL Wiener filter is derived by taking the gradient of the
subband MSE, J(k, n), with respect to h̃H(k, n) and forcing
the result equal to zero. The solution is

h̃W(k, n) = Φ−1
ỹ (k, n)Φx̃(k, n)i4M,1 (29)

=
[
I4M −Φ−1

ỹ (k, n)Φṽ(k, n)
]
i4M,1,

where i4M,1 is the first column of I4M , and Φx̃(k, n) ,
E[x̃(k, n)x̃H(k, n)] and Φṽ(k, n) , E[ṽ(k, n)ṽH(k, n)] are
the covariance matrices of x̃(k, n) and ṽ(k, n), respectively.

According to (21), we have

Φx̃(k, n)i4M,1 = ϕX1(k, n)dX1(k, n), (30)

where ϕX1(k, n) = E[|X1(k, n)|2] is the variance of
X1(k, n). So, we can also write the WL Wiener filter as

h̃W(k, n) = ϕX1
(k, n)Φ−1

ỹ (k, n)dX1
(k, n) (31)

= Φ−1
ỹ (k, n)

[
ϕY1(k, n)dY1(k, n)

− ϕV1(k, n)dV1(k, n)
]
,

where ϕY1(k, n) and ϕV1(k, n) are, respectively, the variances
of Y1(k, n) and V1(k, n), and dY1(k, n) and dV1(k, n) are
defined analogously to dX1(k, n) in (21).

With the derived WL Wiener filter, the resulting signal
estimate at (k, n) is

X̂1(k, n) = h̃H
W(k, n)ỹ(k, n) (32)

= iT4M,1Φx̃(k, n)Φ
−1
ỹ (k, n)ỹ(k, n).

Now using the relationship in (27), the estimate of X1(K −
k, n) can be obtained as

X̂1(K − k, n) = iT4M,3M+1Φx̃(k, n)Φ
−1
ỹ (k, n)ỹ(k, n), (33)

where i4M,3M+1 is the (3M+1)th column of I4M . Inspecting
(32) and (33), one can see that we only need to estimate the
WL Wiener filter for half of the total STFT subbands, which
is similar to the case of monaural noise reduction with real
input signals.
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Fig. 1. Performance of the developed WL Wiener filter (solid) and the filter
in [10] (dashed) as a function of the forgetting factor in white Gaussian noise:
(a) the fullband output SNR and (b) the fullband speech distortion index.

VI. EXPERIMENTS

Now, we briefly evaluate the performance of the developed
STFT-domain WL Wiener filer using experiments. For com-
parison, the filter developed in [10] is also evaluated. The
experiments are configured using the room impulse responses
measured at Bell Labs Varechoic Chamber [20], [21]. We
consider a moderate reverberation condition with the rever-
beration time T60 of approximately 0.24 s. An equispaced
linear microphone array with 8 omnidirectional microphones
is configured: the first sensor is located at the position (3.037,
0.500, 1.400) (in meters) and the last sensor is place at (3.737,
0.500, 1.400), the spacing is 0.1m. To simulate a moving
source, we play back some speech signals from the TIMIT
database [22] and change the position of the source every
4 seconds among positions (1.337:1.000:4.337, 1.938, 1.600)
(forth and back). The microphone signals are generated by
convolving the source signal with the corresponding impulse
responses and white Gaussian noise is then added to the
convolution results to control the input signal-to-noise ratio
(SNR) to be 5 dB. All the signals are resampled from the
original sampling rate to 8 kHz. Note that in this paper we put
aside the influence of noise estimation on performance and
compute the covariance matrices directly from the noisy and
noise signals using a recursive method with the two forgetting
factors λy = λv [23].

Both the fullband output SNR and speech distortion index
[6] of the developed WL Wiener filter and the filter in [10]
are plotted in Fig. 1. We observe that both filters are able to
improve the output SNR considerably, but with some distortion
being added into the speech. Comparatively, the WL Wiener
filter developed in this paper can yield better performance, i.e.,
higher output SNR and smaller value of the speech distortion
index when the forgetting factors are properly chosen. It is
interesting to notice that the developed WL filter requires
only half the number of microphones for obtaining a similar
performance achieved with the method in [10].
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Fig. 2. The PESQ score of the developed WL Wiener filter (solid) and the
filter in [10] (dashed) as a function of the forgetting factor in white Gaussian
noise. (a) The PESQ score for the left-channel enhanced speech. (b) The
PESQ score for the right-channel enhanced speech.

Fig. 2 plots the perceptual evaluation of speech quality
(PESQ) [24] scores of both the developed WL Wiener filter
and the filter in [10] as a function of the forgetting factor, λy .
Since the PESQ standard does not support complex signals,
we take the left- and right-channel outputs from the enhanced
complex speech signals and compute the PESQ scores sepa-
rately. It can be observed from Fig. 2 that the PESQ score
first increases with λy and then decreases. Comparatively, the
WL Wiener filter developed in this work achieves a higher
PESQ score than the method in [10]. Based on the results
in Fig. 2, Table I gives the difference between the maximum
PESQ scores that are achieved with the two WL Wiener filters
with properly chosen forgetting factors.

TABLE I
DIFFERENCE BETWEEN THE MAXIMUM PESQ SCORES OF THE

DEVELOPED WL WIENER FILTER AND THE FILTER IN [10].

M 1 2 4
Left 0.12 0.09 0.06

Right 0.18 0.13 0.10

To visualize the preservation of the sound spatial infor-
mation, we computed the cross-correlation function (CCF)
between the signals at the two output channels (estimating the
signal of interest from the first and 5th microphones) every
128ms. The CCFs are computed using a short-time average
method as in [6]. The contours of the time-varying CCFs of
the clean, noisy, and two enhanced signals are plotted in Fig. 3,
where 8 microphones are used, i.e., M = 4, and value of the
forgetting factors for the method in [10] is 0.89 and that of the
developed Wiener filter is 0.92 (the value is chosen according
to the maximum output SNR that the respective filter can
achieve as in the previous simulation). In Fig. 3, the maximal
value of the CCF at each time can be seen as the current
position of the moving speech source. At the presence of noise,
one can note that the sound spatial effect has been dramatically
modified. From the third and bottom traces in Fig. 3, One can
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Fig. 3. Computed CCF Contours for the clean speech (top trace), noisy
speech (second trace), the enhanced speech by the method [10] (third trace),
and the enhanced speech using (29) (bottom trace).

see that both the method in [10] and the developed WL Wiener
filter recover the sound spatial information very well.

To quantitatively compare the performance of the developed
WL Wiener filter and the filter in [10] in terms of noise
reduction and spatial information preservation, we compute
both the output SNR and the Euclidean distance between
the clean speech CCF (the CCF between the clean speech
at the first microphone and that at the 5th microphone) and
that of the enhanced signals. With our experimental setup, the
output SNR of the WL Wiener filter developed in this paper
is 17.77 dB while that of the method in [10] is 17.16 dB. The
distance between the clean CCF and the CCF of the enhanced
signals by the WL Wiener filter developed in this paper is
9.13 while that by the method in [10] is 11.88. These results
clearly indicate that the developed STFT-domain WL Wiener
filter outperforms the method in [10].

VII. CONCLUSION

In this paper, we investigated the binaural noise-reduction
problem based on the use of microphone arrays. We adopted
the WL filtering framework in which both the multiple inputs
and binaural outputs were merged into complex signals, which
were subsequently transformed into the STFT domain to
achieve binaural noise reduction. The noncircularity property
of the complex signals and the interband relationship were
subsequently exploited and a WL multichannel Wiener filter
was developed. Experiments showed that this WL Wiener filter
did not only enhance the noisy speech dramatically, but also
recovered the spatial information of the clean speech source. In
comparison with a method developed recently, the WL Wiener
filter derived in this work yielded higher output SNR, larger
PESQ score, smaller value of the speech distortion index, and
better preservation of the source spatial information. It was
observed that the developed WL Wiener filter only requires
half of the number of microphones for obtaining a similar
performance of a recently developed method.
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