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ABSTRACT

The Local Cosine Decomposition of Coifman
and Wickerhauser [1] is modified by incorpo-
rating two degrees of freedom that increase the
adaptability of the best basis. These are relative
shifts between resolution levels and adaptive po-
larity foldings. The resultant expansion is shift-
invariant, and yields adaptive time-frequency
distributions which are characterized by high
resolution, high concentration and suppressed
cross-terms associated with the Wigner distri-
bution.

1. INTRODUCTION

Adaptive signal representations in overcomplete
libraries of waveforms have been widely used in
recent years. Instead of representing a prescribed
signal in a fixed basis, it is useful to choose a
suitable basis that facilitates a desired application,
such as compression, identification, classification
or noise removal (denoising) [1, 2, 3]. Coifman
and Meyer were the first to introduce libraries
of orthonormal bases which are organized in a
binary tree structure, where the best basis can
be efficiently searched for, and whose elements
are localized in the time-frequency plane [4]. Of
particular interest are the libraries of local trigono-
metric bases, which consist of sines or cosines mul-
tiplied by smooth window functions, and libraries
of wavelet packet bases, comprising translations
and dilations of wavelet packets. The libraries
are naturally organized in binary trees, and the
best basis which minimizes a certain information
cost function (e.g., entropy) is searched using the
divide-and-conquer algorithm [1].

A serious drawback is the lack of shift-
invariance. Both the wavelet packet decomposi-
tion (WPD) and local cosine decomposition (LCD)
of Coifman and Wickerhauser [1], as well as the
extended algorithms proposed by Herley et al. [5],
are sensitive to the signal location with respect
to the chosen time origin. Several approaches
that resolve this problem (e.g., [2, 6, 7]) either
introduce redundancy (oversampling), entail high
computational complexity, or alternatively the re-
sulting representations are non-unique and involve
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approximate signal reconstructions.

Another approach is to extend the library
of bases, in which the best representations are
searched for, by introducing an additional degree
of freedom that adjusts the time-localization of
the basis functions [8, 9, 10, 11]. In case of
wavelet transform or wavelet packet decomposi-
tion, the additional degree of freedom is possibly
an adaptive even-odd down-sampling. That is, fol-
lowing the low-pass and high-pass filtering, when
expanding a parent-node, retain either all the odd
samples or all the even samples, according to the
choice which minimizes the cost function. This
modification of the wavelet transform and wavelet
packet decomposition leads to orthonormal best-
basis representations which are shift-invariant and
characterized by lower information costs [9].

In this work a similar approach is applied to
smooth local trigonometric bases. We modify
the LCD of Coifman and Wickerhauser by in-
corporating into the best-basis search algorithm
two additional degrees of freedom that increase
the adaptability of the best-basis. These degrees
of freedom are relative shifts between expan-
sions in distinct resolution levels and adaptive
polarity foldings. It is proved that the pro-
posed algorithm, namely shift-invariant adapted-
polarity local trigonometric decomposition (STAP-
LTD), leads to a “best-basis” representation that
is shift-invariant, orthonormal and characterized
by a lower information cost and improved time-
frequency resolution when compared to the LCD.
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Figure 1. The signal ¢(¢): Evolution of an electro-
magnetic pulse in a relativistic magnetron (hetero-
dyne detection; local oscillator=2.6GHz).



o
2

o
~

o
w

o
N

Frequency [GHz]

o
o

=}

N
N
alk
oL

0 50 100 150

00
Time [nSec]
(a)

Figure 2.

05
0.4 —
I~ —
T E—
903
> —
(8]
c I
E] —
202
IS  —
I —
0.1
0 n : n n 1
0 50 100 150 200 250
Time [nSec]

Effect of a temporal shift on the time-frequency representation using the Local Cosine

Decomposition: (a) g() in its best basis, Entropy=3.30. (b) g(# — 20) in its best basis, Entropy=3.08.

2. THE BEST-BASIS EXPANSION

Let M denote an additive information cost func-
tional and let B represent a library of orthonormal
bases. Then for a signal g, the best basis in B is
that B € B for which M(Bg), the information
cost of representing g on the basis B, is minimal.

For the LCD [1], a prescribed signal supported
on an interval [0, V) is first split into overlapping
intervals [277/n —€,27 " (n + 1) +¢), where £ (0 <
(<L <J)yandn (0 < n < 2% are respectively the
resolution-level and position indices, J = log, N,
and € > 0 controls the smoothness of the windows.
Then a folding operator [12] “folds” overlapping
parts into the segments, and a standard cosine
transform is applied on each segment. 1In this
case, the basis-functions are local cosines with
even parity at the left endpoint and odd parity
at the right endpoint.

Here, the LLCD is modified and extended by
allowing a larger set of intervals and a variable-
polarity folding operator, which is adapted to the
signal [10]. The intervals, having an additional
degree of freedom are of the form:

L = ['2‘]_[71 +m— e, 'ZJ_f(n +1)+m+e) (1)

where m (0 < m < 277%) is a shift index. In this
case, the basis-functions are local sines or cosines
with either odd or even parities at the segments’
endpoints. To ensure orthonormality of the basis-
functions, at each endpoint the parity of basis-
functions on the left is opposite to the parity of
those on the right. Therefore intervals have at
their endpoints either even-odd polarity or odd-
even polarity. We designate the polarity at an
endpoint by an index p € {0,1} (p = 0 for even-
odd polarity and p = 1 for even-odd polarity).
Denote by Bz%ﬁ; the set of basis functions on

the interval I, ,, having pg polarity at the left
endpoint and py polarity at the right endpoint.
Let AJ2”! be the best basis for ¢ restricted to the

P1
,m

closure of the linear span of B)°” . Accordingly,

Afg., for some shift 0 < 7 < N and polarity
p € {0,1} constitutes the best basis for g. These
parameters, namely 7 = mg and p = po(0)
which specify the shift and polarity at the coarsest
resolution level (¢ = 0), are determined recursively
together with the best basis: Suppose that at the
resolution level ¢ we have found my, {p/(7)|0 <

i < 2% and APe(rhpe(nt 1) g0 a1 0 < n < 20

ﬁ,n,mz

Then we will choose my_1, {pr—1(i)|0<i < 21y

A 01 <2 st

minimize the information cost.

It can be shown that if I and .J are adjacent
intervals, then we can switch from a basis on
the interval I U J to bases on I and .J, since
Span{ B} & Span{ B} "} = Span{ B ).

By (1) we have that

and

Iﬁ—l,n,m = Iﬁ,?n—l—a,mc u Iﬁ,?n—l—l—l—a,mc (2)

where m. = m —a-277" and a € {0, 1} such that
m. € [0,277*). Consequently,

POP 3
APoP1 { Bﬁil,;wm if MB < MA ? (3)
{=1mn,m — P02 p2,P1
Aﬁ,?n—l—a,mc @ Aﬁ,?n—l—l—l—a,mc? else
where

MA = M(Azoizfl—a,mcg) + M(Azz‘izil—l—l—a,mcg) is
the information cost of the children, Mp =
M(BF!  g) the information cost of the parent,

{—1,n,m
and pa = pe(2n + 1 4 a) is the right polarity of
the left child and left polarity of the right child.
Now, to acquire shift-invariance it is sufficient to
consider two optional values of my_q1: my and

me + 277L. The respective information costs of
g when expanded at the resolution level £ — 1 are
20-11
2n),pe(2n+2
= X MA@
n=0
20-11

{—1,mn,mp+27—¢

2/_1 _ Z M(Apz(2n+1)vpe('2n+3)g) (5)
n=0
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Figure 3. Time-frequency representations using the SIAP-LTD: (a) ¢(¢) in its best basis, Entropy=2.89.
(b) g(t — 20) in its best basis, Entropy=2.89. Compared with the LCD (Fig. 2), beneficial properties

are shift-invariance and lower information cost.

Thus we select that value of my_; which yields a
cheaper representation, i.e.,

o, MG <MY
-1 = { me+ 277, else. (6)

The polarity indices at the resolution level £ — 1
are obtained by keeping those which correspond to
endpoints. Namely, for 0 < n < 2-!

_ pe(2n), if M@—l < 2/—17 ;
pe-1(n) = { pe(2n + 1 mod 2¢),  else. (7)

The recursive procedure is carried out down to
a specified level £ = I (L < .J), where we impose

APOsPY _ gPosP1 (8)

L,n,m L,n,m
and pick a combination of shift and polarity by

my, = arg min
0<m<2/-L

2L 1

{3 Mt gy (9)
n=0

pr(n) =mp,(n), 0<n< 2l (10)

where

Tm(n) =argmin _ C,, ,(7),

T€{0,1}
Crn(m) = min {M BPo:™ + M(BT" )
al )907916{0,} ( Lv”vmg) ( L,n+1,mg)}

Proposition 1 The best basis expansion stem-
ming from the previously described recursive algo-
rithm is shift-invariant.

Detailed proof appears in [10]. The compu-
tational complexity of executing STAP-LTD is
O(N(L + 27-*1)]log, N), where N denotes the
length of the signal. This complexity is compara-
ble to that of LCD [1] (O(N Llog, N)) with the
benefits of shift-invariance and a higher quality
(lower “information cost”) “best-basis”.

3. ADAPTIVE TIME-FREQUENCY
DISTRIBUTION

We have used the time-frequency representation
deriving from the STAP-LTD to analyze electro-
magnetic pulses (/200 nanoseconds long) gener-
ated by a high power (=100 MegaWatts) rela-
tivistic magnetron [13]. Time resolved spectral
power density sheds more light on undesirable phe-
nomena, such as mode build-up and competition
and pulse shortening [14], which are common in
these high power short pulse microwave tubes.
To illustrate the shift-invariant properties of the
STAP-LTD and its enhanced time-frequency rep-
resentation compared to the LCD, we refer to the
expansions of the signals ¢g(¢) (Fig. 1) and g(t—20).
For definiteness, we choose entropy as the cost
function. Figs. 2 and 3 depict the “best-basis”
expansions under the L.CD and the STAP-LTD
algorithms, respectively. The sensitivity of LCD to
temporal shifts is obvious, while the “best-basis”
STAP-LTD representation is indeed shift-invariant
and characterized by a lower entropy.

The tilings of the time-frequency (TF) plane
are idealized representations interconnected with
specific basis expansions. A basis-function is
symbolized by a rectangular cell whose area is as-
sociated with Heisenberg’s uncertainty principle,
and its shade is proportional to the corresponding
coefficient squared. To form time-frequency distri-
butions, we sum up the auto Wigner distribution
(WD) of the basis functions and cross WD of pairs
which are “close” in the TF plane. Since the cross-
term interference is caused by the cross WD of
distinct components, one can decide on a distance
threshold D in the TF plane, such that farther
basis-functions are considered unrelated and their
cross WD is discarded.

Let ¢ = 5", cxpn be the best-basis expansion of
the signal ¢g. Then its TF distribution is given by

TFDg:Z|cA|2W%—|-'22 Re{cacy W, 0, } (11)
AEA (AMAer
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Figure 4. Mesh plots for the signal ¢(¢): (a) SIAP-LTD based time-frequency distribution; (b) Wigner
distribution; (c¢) Smoothed pseudo Wigner distribution. The SIAP-LTD yields an adaptive distribution
where high resolution, high concentration, and suppressed cross-term interference are attainable.

where the contributing basis-functions are only
those whose coefficients are large enough:

A={X||ex| >6M}, M = meX{|cA|}
I'= {(Av A/) | d(@% S‘QA’) <D, |C/\C/\’| > 62M2}

By adjusting the distance threshold D and
amplitude threshold 6, one can effectively balance
the cross-term interference, the useful properties
of the distribution (time/frequency marginals, en-
ergy conservation, instantaneous frequency, etc.
[15]), and the computational complexity. Fig. 4
compares between the STAP-LTD based time-
frequency distribution, the WD and smoothed
pseudo Wigner distribution [15] for the signal
g(t). The adaptive time-frequency representation
presented here obtains high resolution and con-
centration in time-frequency, and avoids the cross-
terms associated with the WD.

4. CONCLUSION

A fast algorithm for shift-invariant best-basis ex-
pansion and adaptive time-frequency distribution
is presented. When compared with the LCD algo-
rithm proposed in [1], STAP-LTD is determined
to be advantageous in four respects: 1) Shift-
invariance. 2) Lower information cost. 3) The
folding operator is adapted to the parity properties
of the signal. 4) It provides an adaptive time-
frequency distribution, attaining high resolution
and concentration, and suppressed cross-term in-
terference. The generated distribution is adjusted
by threshold parameters that balance the cross-
term interference, the useful properties and the
computational complexity.
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