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ABSTRACT

In this paper, we propose a speech enhancement algorithm for
estimating the clean speech using samples of air-conducted
and bone-conducted speech signals. We introduce a model
in a supervised learning framework by approximating a map-
ping from concatenation of noisy air-conducted and bone-
conducted speech to clean speech in the short time Fourier
transform domain. Two function extension schemes are
utilized: geometric harmonics and Laplacian pyramid. Per-
formances obtained from the two schemes are evaluated and
compared in terms of spectrograms and log spectral distance
measures.

Index Terms— Multisensory, bone-conducted micro-
phone, geometric harmonics, Laplacian pyramid.

1. INTRODUCTION

Bone-conducted microphone, being less sensitive to sur-
rounding noise, can work complementarily to a regular air-
conducted microphone in noisy environments. However,
high frequency components of bone-conducted microphone
signals are attenuated significantly due to transmission loss.
Hence the quality of speech signals acquired by a bone-
conducted microphone is relatively low. We wish to enhance
the speech signal by combining both air-conducted and bone-
conducted microphones and producing high quality speech
signal with low background noise.

Existing multisensory speech enhancement methods can
be classified into two main categories, according to the role
of the bone-conducted microphone [13]: In the first category,
the bone-conducted microphone is used as a supplementary
sensor, whereas in the the second one the bone-conducted mi-
crophone is used as a dominant sensor. Implementation in the
first category relies on the accuracy of a voice activity detec-
tion or pitch extraction facilitated by the bone-conducted mi-
crophone. When the bone-conducted microphone is exploited
as the main acquisition sensor, algorithms are related to either
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equalization, analysis-and-synthesize, or probabilistic ap-
proaches. Generally, equalization approaches reconstruct the
clean speech through an finite impulse response (FIR) filter
of the pre-enhanced air and bone conducted speech spectra
ratio [7]. Similar to equalization approaches, analysis-and-
synthesize methods require a speech enhancement procedure
priorly, whereas the reconstruction filter is the ratio of the
linear prediction model of both speech signals [15]. With
Gaussian noise hypothesis in air and bone channels, proba-
bilistic approaches can be conducted either in a maximum
likelihood sense [8] or a minimum mean square error sense
[12] . According to various assumptions of speech and noise
models, more complicated algorithms have been proposed as
well, such as non-linear information fusion [4], model-based
fusion [6], and bandwidth extension [11].

In this paper, the clean speech is restored through a family
of functions named geometric harmonics, i.e., eigenfunction
extensions of a Gaussian kernel. Geometric harmonics can
describe the geometry of high dimensional data and extend
these descriptions to new data points, as well as the func-
tion defined on the data. In our case, the high dimensional
data is defined by concatenation of air-conducted and bone-
conducted speech in the short time Fourier transform (STFT)
domain. A nonlinear mapping to the STFT of the clean speech
defined on the new concatenation of speech signals can be ob-
tained by a linear combination of geometric harmonics.

Application of geometric harmonics requires a careful ad-
justment of the correct extension scale and condition number.
As a result, a multi-scale Laplacian pyramid extension is uti-
lized to avoid this scale tuning. Based on the kernel regres-
sion scheme, Laplacian pyramid extension approximates the
residual of the previous representation via a series of Gaus-
sian kernels.

Experiments are conducted on simulated air-conducted
and bone-conducted speech in interfering speaker and Gaus-
sian noise environments. Geometric methods provide a con-
sistent reconstruction of speech spectrograms in a variety
of noise levels and categories. Log spectral distance results
obtained using the proposed methods are compared to an
existing probabilistic approach. We show that the Laplacian



pyramid method outperforms the other methods.
The structure of this paper is as follows: In Section 2, we

fomulate the model and describe the geometric harmonics and
Laplacian pyramid. In Section 3, we present experimental re-
sults that demonstrate the advantage of the Laplacian pyramid
method over the competing methods. Finally, in Section 4 we
summarize the paper and present future directions.

2. GEOMETRIC METHODS

2.1. Model Fomulation

Based on an additive noise model, the noisy air-conducted
and bone-conducted speech in the STFT domain can be rep-
resented as follows:

ya (k, l) = x (k, l) + n (k, l)
yb (k, l) = f (x (k, l)) .

(1)

where x (k, l), n (k, l) are the clean speech and noise respec-
tively, k and l are the frequency bin and time indices respec-
tively, and f is the nonlinear mapping from the clean speech
to the bone-conducted speech.

Our goal now is to learn the inverse of f and extend it
to new bone-conducted speech signals. For a more reason-
able experiment setup, we concatenate the STFT of noisy air-
conducted (AC) and bone-conducted (BC) speech together
and define them as the training set with m data points in Rn

S = [ya (k, l) yb (k, l) ]k=1...n,l=1...m. (2)

where n is the total number of frequency bins and m is the
total number of frames. As a result, we need to learn the high
dimensional nonlinear function f and extend it in the test data
for the clean speech reconstruction.

Geometric extension methods such as geometric harmon-
ics and Laplacian pyramid can be used for high dimensional
nonlinear empirical function extension. Generally, those
methods rely on a Gassuian kernel to measure the distance
between different data points.

The kernel k : S̄ × S̄ → R
• is symmetric, i.e., k (x̄, ȳ) = k (ȳ, x̄) for all x̄ and ȳ in

S̄.
• is positive semi-definite, i.e., for any m ≥ 1 and any

choice of real numbers α1, ..., αm and of points x̄1, ..., x̄m in
S̄, we have

m∑
i=1

m∑
j=1

αiαjk (x̄i, x̄j) ≥ 0. (3)

• is bounded on S̄ × S̄ by a number M > 0, i.e., for any
points in S̄, we have

k (x̄i, x̄j) ≥M. (4)

In the training procedure, we first concatenate the noisy
AC speech ya and BC speech yb as y and build a Guassian

kernel K between every two data points. This affinity matrix
between all the training data pairs are then eigendecomposed,
where the weights w of the eigenspace description are saved
as the inner product of clean speech x and the eigenvectors
ϕl (y).

We concatenate a new speech captured by the air-conducted
and bone-conducted microphone simultaneously in a noisy
environment as the test data ȳ. The extension of the function
f mapping ȳ to x̄ is built on the formulation of the geometric
harmonics ϕl (ȳ) which average over the eigenfunctions of
the new affinity matrix between the test speech and all the
training speech signals. Finally, the clean speech x̄ is es-
timated by a linear combination of the weighted geometric
harmonics.

In the Laplacian pyramid method, we first build a Gaus-
sian kernel K0 between a test speech signal ȳ and all the
training data y with an initial scale σ0. Then a preliminary
estimation s0 is obtained by the superposition of all the train-
ing data points x weighted by this initial kernel. We acquire
a residual d1 by subtracting this first estimation s0 from the
original function x. The second step estimation s1 is obtained
by a superposition of the residual d1 weighted by a finer ker-
nel K1. The overall result is the sum of the estimations in a
couple of iterations.

2.2. Geometric harmonics

Geometric Harmonics (GH) [3] is derived from the Nyström
extension, which has been widely used in partial differential
solvers, machine learning and spectral graph theory to sub-
sample large data sets [1]. It can also be applied to extend
functions from a training set to accommodate the arrival of
new samples. The extension of function f defined on a set
S to a larger set S̄ is based on the construction of a specific
family of functions termed as geometric harmonics.

The geometric harmonics are defined by the extended
eigenfunction ψj (when λj 6= 0)

ψj (x̄) =
1

λj

∫
S

k (x̄, y)ψj (y) dµ (y) . (5)

These functions constitute a generalization of the prolate
spheroidal wave functions of Slepian in the sense that they
are optimally concentrated on S. GH algorithm is describled
in Table 1.

The drawbacks of geometric harmonics may come from
three pespectives: 1) It needs parameters tuning, i.e., kernel
scale and condition number of remaining eigenvectors; 2) The
function is extended in the eigenvector space rather than the
original space, which may not decribe the high dimensional
data well; 3) The complexity of the function may influence
the extesion range, thus will lead to an inaccurate extension
result for complicated function.

Laplacian pyramid method can circumvent these prob-
lems via iterating the kernel on the residual of previous result



Table 1: GH algorithm
Algorithm
Input: X ∈ Rn×m, f (x) ∈ Rn/2, ε, l, y
Output: Extended function f(y)

1. Build a Gaussian kernel k = e−
‖xi−xj‖2

2ε .
2. Compute the set of eigenvalues ϕl (x) for this kernel

λlϕl (xi) =
∑
xj∈S

e−
‖xi−xj‖2

2ε ϕl (xj), xi ∈ S.

3. Extend the eigenvalues ϕl (y) via geometric harmonics

ϕl (y) = 1
λl

∑
xj∈S

e−
‖y−xj‖2

2ε ϕl (xj), y ∈ S̄.

4. Extend function via linear combination of the basis
f (y) =

∑
λl≥δλ0

〈ϕl, f〉 ϕ̃l (y) .

Table 2: LP algorithm
Algorithm
Input: X ∈ Rn×m, f (x) ∈ Rn/2, σ0, y
Output: Extended function f(y)
Initialize: Build a normalized Gaussian kernel K0.

Approximate the function s0 (y) =
n∑
i=1

k0 (xi, y)f (xi)

Repeat
1. Build the Gaussian kernel Wl with decreasing scale

Wl = wl (xi, xj) = e−‖xi−xj‖
2/(σ0

2l
).

2. Normalize the kernel by the row sum
Kl = kl (xi, xj) = q−1l (xi)wl (xi, xj)

where ql (xi) =
∑
j

wl (xi, xj).

2. Compute the residual dl = f −
l−1∑
i=0

si.

3. Approximate the function sl (y) =
n∑
i=1

kl (xi, y)dl (xi).

End: Extend function via summation f (y) =
∑
k≤l sk (y).

in the original space.

2.3. Laplacian pyramid

Laplacian pyramid (LP) is originally an image encoding tech-
nique where local operators of distinct scales, but of identical
shapes, serve as the basis functions [9]. It can describe data
iteratively via Gaussian kernels of decreasing widths. At a
given scale l, the Laplacian pyramid is used for constructing
a coarse representation of a function f . The algorithm is iter-
ated by approximating the residual using a Gaussian kernel of
a finer scale. The approximation function at a given scale can
be extended to new data points. The overall extension is the
sum of approximations in different scales. The LP algorithm
is describled in Table 2.

(a)

(b)

Fig. 1: Speech spectrograms and waveforms: (a) Clean signal; (b) bone-
conducted signal (LSD=2.1317).

3. EXPERIMENTAL RESULTS

In this section, we present simulation results which demon-
strate the performances of geometric harmonics and Lapla-
cian pyramid compared to an existing probabilistic approach.
Ten utterances of speech signals are taken from the TIMIT
database [5]. The sampling frequency is fs = 16 kHz. The
STFT window is a Hanning window of length N = 256 and the
overlap between two successive STFT frames is 50 percent.
The BC speech signals are obtained by low pass filtering the
AC speech signals, where the pass–band cutoff frequency is
300 Hz and stop–band cutoff frequency is 3 kHz. Noisy AC
speech signals are generated by adding Gaussian noise and
interfering speaker. We choose ε = 10 and σ0 = 100.

The spectrograms of AC speech, BC speech, noisy clean
speech and reconstructed speech via the Laplacian pyramid
are demonstrated in Figures 1–3. Figure 1 illustrates the clean
and bone-conducted speech, and Figures 2 and 3 illustrates
the result for Gaussian noise and an interfering speaker. The
figures demonstrate that the LP method facilitates enhance-
ment of speech signals not only in stationary noise environ-
ments such as white Gaussian noise, but also in nonstationary
noise environments such as an interfering speaker.

The log spectral distortion (LSD) measure is used to eval-
uate the quality of the reconstructed speech. The results have



(a)

(b)

Fig. 2: Speech spectrograms and waveforms: (a) noisy air-conducted sig-
nal in Gaussian noise environment (SNR=10, LSD=2.4526); (b) Speech en-
hanced using the LP method (LSD=1.1028).

been evaluated for GH, LP, optimally modified log spectral
amplitude (OM-LSA) [2] and an existing probabilistic ap-
proach (PA) [14].

Table 3: LSD results for Gaussian noise with different SNR levels and inter-
fering speech, obtained by using four different speech enhancement methods:
GH, LP, OM-LSA and PA.

LSD GH LP OM-LSA PA
SNR =0 1.5726 1.1003 2.0901 1.9613
SNR = 10 1.5564 1.1028 1.4979 2.1592
SNR = 20 1.5755 1.1021 1.1085 2.2531
Interfering speech 1.5660 1.1768 1.3604 2.2672

Table 3 presents the LSD results for Gaussian noise with
different SNR levels and interfering speech, obtained by using
four different speech enhancement methods: GH, LP, OM-
LSA and PA. The table demonstrates that the LP method con-
sistently provides the lowest distortion for all tested SNR lev-
els and noise types. The noise level has little influence on
the geometric extension methods, which may result from the
fact that the nonlinear mapping learned via geometric meth-
ods implicitly involves the noise model.

(a)

(b)

Fig. 3: Speech spectrograms and waveforms: (a) noisy air-conducted sig-
nal in an interfering speaker environment (SNR=-1.7821, LSD=1.2804); (b)
Speech enhanced using the LP method (LSD=1.1768).

4. CONCLUSIONS

We have presented two function extension techniques for
speech reconstruction under the knowledge of samples of
air-conducted and bone-conducted speech. Experiments
have been conducted on simulated air-conducted and bone-
conducted speech in Gaussian noise environments and an
interfering speaker. Although involving some distortion, ge-
ometric methods enable further noise reduction for a wide
range of noise levels and categories.

A possibility for future research is conducting geometric
harmonics in a multi-scale manner in accordance with the
Laplacian pyramid mechanism, where the extension can be
viewed as approximations of residuals in a series of decreas-
ing scales. Furthermore, the relation between the iteration
number in the Laplacian pyramid method and noise level in
the observation can be derived to pre-determine the iteration
number, rather than choosing it via trials of experiments.
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