47. Adaptive Beamforming and Postfiltering

In this chapter, we explore many of the basic con-
cepts of array processing with an emphasis on
adaptive beamforming for speech enhancement
applications. We begin in Sect. 47.1 by formu-
lating the problem of microphone array in a
noisy and reverberant environment. In Sect. 47.2,
we derive the frequency-domain linearly con-
strained minimum-variance (LCMV) beamformer,
and its generalized sidelobe canceller (GSC) vari-
ant. The GSC components are explored in Sect. 47.3,
and several commonly used special cases of
these blocks are presented. As the GSC struc-
ture necessitates an estimation of the speech
related acoustical transfer functions (ATFs), sev-
eral alternative system identification methods
are addressed in Sect.47.4. Beamformers often
suffer from sensitivity to signal mismatch. We
analyze this phenomenon in Sect.47.5 and ex-
plore several cures to this problem. Although the
GSC beamformer yields a significant improve-
ment in speech quality, when the noise field is
spatially incoherent or diffuse, the noise reduc-
tion is insufficient and additional postfiltering is
normally required. In Sect. 47.6, we present multi-
microphone postfilters, based on either minimum
mean-squared error (MMSE) or log-spectral am-
plitude estimate criteria. An interesting relation
between the GSC and the Wiener filter is derived in
this Section as well. In Sect. 47.7, we analyze the
performance of the transfer-function GSC (TF-GSC),
and in Sect. 47.8 demonstrate the advantage of
multichannel postfiltering over single-channel
postfiltering in nonstationary noise conditions.
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Over the last four decades, array processing has be-
come a well-established discipline, see e.g., [47.1-14].
In the mid 1980s, array processing and beamform-
ing methods were adopted by the speech community
to deal with data received by microphone arrays.
Since then, beamforming techniques for microphone
arrays have been used in many applications, such as
speaker separation, speaker localization, speech dere-
verberation, acoustic echo cancellation, and speech
enhancement.

Adaptive beamforming for speech signals requires
particular consideration of problems that are specific
to speech signals and to the acoustic environment. The
speech signal is wide-band, highly nonstationary, and
has a very wide dynamic range. An acoustic enclosure
is usually modeled as a filter with very long impulse
response due to multiple reflections from the room
walls. In a typical office, the length of the filters may
reach several thousand taps. Furthermore, the impulse
response is often time varying due to speaker and objects
movements.

The term beamforming refers to the design of a spa-
tiotemporal filter. Broadband arrays comprise a set of
filters, applied to each received microphone signal, fol-
lowed by a summation operation. The main objective of
the beamformer is to extract a desired signal, imping-
ing on the array from a specific position, out of noisy
measurements thereof. Usually, the interference signals
occupy the same frequency band as the desired signal,
rendering temporal-only filtering useless. The simplest
structure is the delay-and-sum beamformer, which first
compensates for the relative delay between distinct mi-
crophone signals and then sums the steered signal to
form a single output. This beamformer, which is still
widely used, can be very effective in mitigating nonco-
herent, i. e., spatially white, noise sources, provided that
the number of microphones is relatively high. However,
if the noise source is coherent, the noise reduction (NR)
is strongly dependent on the direction of arrival of the
noise signal. Consequently, the performance of the de-
lay and sum beamformer in reverberant environments
is often insufficient. Jan and Flanagan [47.15,16] and
Rabinkin et al. [47.17] extended the delay and sum con-
cept by introducing the filter-and-sum beamformer. This
structure, designed for multipath environments, namely
reverberant enclosures, replaces the simpler delay com-
pensator with a matched filter.

The array beam pattern can generally be designed to
have a specified response. This can be done by properly
setting the values of the multichannel filters’ weights.
However, the application of data-independent design

methods is very limited in dynamic acoustical environ-
ments. Statistically optimal beamformers are designed
based on the statistical properties of the desired and in-
terference signals. In general, they aim at enhancing the
desired signal, while rejecting the interference signal.
Several criteria can be applied in the design of the beam-
former, e.g., maximum signal-to-noise ratio (MSNR),
minimum mean-squared error (MMSE), and linearly
constrained minimum variance (LCMV). A summary
of several design criteria can be found in [47.5,7].

Beamforming methods use the signals’ statistics
(at least second-order statistics), which is usually not
available and should be estimated from the data. More-
over, the acoustical environment is time varying, due
to talker and objects movements, and abrupt changes
in the noise characteristics (e.g., passing cars). Hence,
adaptation mechanisms are required. An adaptive coun-
terpart of each of the prespecified design criteria can
be derived. Early contributions to the field of adap-
tive beamformers design can be attributed to Sondhi
and Elko [47.18], to Kaneda and Ohga [47.19], and
to Van Compernolle [47.20]. Kellermann [47.21] ad-
dressed the problem of joint echo cancellation and NR
by incorporating echo cancellers into the beamformer
design. Nordholm et al. [47.22,23] used microphone
arrays in a car environment, and designed a beam-
former employing calibration signals to enhance the
obtained performance. Martin [47.24] analyzed beam-
forming techniques for small microphone arrays. Many
other applications of microphone arrays such as hearing
aids, blind source separation (BSS), and dereverberation
are addressed elsewhere in this handbook.

The minimization of the mean-squared error (MSE)
in the context of array processing leads to the well-
known multichannel Wiener filter [47.25]. Doclo and
Moonen [47.26-28] proposed an efficient implemen-
tation of the Wiener filter based on the generalized
singular-value decomposition (GSVD) of the micro-
phone data matrix. This method yields an optimal
estimation (in the MMSE sense) of the desired sig-
nal component of one of the microphone signals. The
authors further proposed efficient schemes for recur-
sive update of the GSVD. An optional, adaptive noise
cancellation postfiltering stage is proposed as well. In
that scheme, in addition to the optimal estimation of
the desired speech signal, an optimal noise channel is
also estimated. This estimated noise component can
be used as a reference noise signal (similar to the one
used in [47.25]), to further enhance the speech signal.
Spriet et al. [47.29] proposed a subband implementa-
tion of the GSVD-based scheme, and Rombouts and



Moonen [47.30,31] proposed to apply the efficient QR
decomposition to the problem at hand.

In many adaptive array schemes the acoustical
transfer-function (ATF) relating the speech source and
the microphone should be known in advance, or at least
estimated from the received data (note that in case of
delay-only propagation, the acoustical transfer function
reduces to a steering vector, consisting of phase-only
components.) In contrast, the multichannel Wiener fil-
ter is uniquely based on estimates of the second-order
statistics of the recorded noisy signal and the noise sig-
nal (estimated during noise-only segments), and does not
make any a priori assumptions about the signal model.
Unfortunately, as pointed by Chen et al. [47.32], the
Wiener filter, which is optimal in the MMSE sense, can-
not guarantee undistorted speech signal at its output.
This drawback can however be mitigated by modifying
the MMSE criterion to control the amount of imposed
speech distortion. A method that employs this modi-
fication is presented in [47.33,34]. It is also shown
that the ATFs information (only a simple delay-only
case is presented in the contributions) can be incorpo-
rated into the Wiener filter scheme (called the spatially
preprocessed Wiener filter), resulting in an improved
performance. The Wiener filter and its application to
speech enhancement is addressed in a separate chapter
of this handbook (6; 43).

In this chapter, we concentrate on a different adap-
tive structure based on the LCMYV criterion. The LCMV
beamformer, proposed by Frost [47.35], is aiming at
minimizing the output power under linear constraints on
the response of the array towards the desired speech sig-
nal. Frost proposed an adaptive scheme, which is based
on a constrained least-mean-square (LMS)-type adapta-
tion (for the LMS algorithm please refer to [47.25]).
To avoid this constrained adaptation, Griffiths and
Jim [47.36] proposed the GSC structure, which separates
the output power minimization and the application of the
constraint. The GSC structure is based on the assump-
tion that the different sensors receive a delayed version
of the desired signal, and therefore we refer to it as the

47.1 Problem Formulation

Consider an array of M sensors in a noisy and reverber-
ant environment. The received signals generally include
three components. The first is a desired speech signal,
the second is some stationary interference signal, and the
third is some nonstationary (transient) noise component.

delay generalized sidelobe canceller (D-GSC). The GSC
structure was rederived in the frequency domain, and ex-
tended to deal with, the more-complicated general ATFs
case by Affes and Grenier [47.37] and later by Gannot
et al. [47.38]. This frequency-domain version, which
takes into account the reverberant nature of the enclo-
sure, was nicknamed the transfer-function generalized
sidelobe canceller (TF-GSC). The GSC comprises three
blocks: a fixed beamformer (FBF), which aligns the de-
sired signal components, a blocking matrix (BM), which
blocks the desired speech components resulting in ref-
erence noise signals, and a multichannel adaptive noise
canceller (ANC), which eliminates noise components
that leak through the sidelobes of the FBF.

Nordholm and Leung [47.39] analyze the limits of
the obtainable NR of the GSC in an isotropic noise
field. Bitzer et al. address the problem in [47.40, 41]
and [47.42]. In [47.40], the authors derive an expression
for the NR as a function of the noise field and evaluate the
degradation as a function of the reverberation time (7¢p).
The special two-microphone case is treated in [47.41].
The additional NR due to the ANC branch of the GSC,
implemented by a closed-form Wiener filter rather than
the adaptive Widrow least-mean-square (LMS) proce-
dure, is presented in [47.42]. The frequency-band nested
subarrays structure is presented and its NR is theoreti-
cally analyzed by Marro et al. [47.43]. A more-complex
dual GSC structure employing calibration signals was
suggested and analyzed by Nordholm et al. [47.44].
Huarng and Yeh [47.45] addressed the distortion issue
by evaluating the desired signal leakage into the ref-
erence noise branch of the GSC structure. However,
the delay-only ATFs assumption is imposed and the
expected degradation due to pointing errors alone is eval-
uated. The performance degradation due to constraining
the Wiener filters to an finite impulse response (FIR)
structure is demonstrated by Nordholm et al. in [47.46].
The resulting performance limits of the GSC structure
strongly depend on the cross-correlation between the
sensors’ signals induced by the noise field, as shown in
the above references and by Cox [47.47].

Our goal is to reconstruct the speech component from
the received signals. Let s(¢) denote the desired source
signal, let a,,(t) represent the room impulse response
(RIR) of the m-th sensor to the desired source, and let
n,(t) denote the noise component at the m-th sensor.

Adaptive Beamforming and Postfiltering | 47.1 Problem Formulation 97
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The observed signal at the m-th sensor (m =1, ... , M)
is given by

Zm (1) = ap (1) % $(2) + 1 (1)

= apm () *s(t) +nS, (1) +nl, (1), (47.1)

where n8,(f) and n!,(r) represent the stationary and
nonstationary noise components at the m-th sensor, re-
spectively, and * denotes convolution. We assume that
both noise components may comprise coherent (direc-
tional) noise component and diffused noise component.

The observed signals are divided in time into over-
lapping frames by the application of a window function
and analyzed using the short-time Fourier transform
(STFT). Assuming time-invariant transfer functions, we
have in the time—frequency domain

Zin(k, &) = Ap(k)S(k, £) + N (k, £)

~ An(k)S(k, £)+ N3, (k, €)+ N%, (k, £)
(47.2)

where ¢ is the frame index and k=1, 2, ..., K repre-
sents the frequency bin index. (The equality in (47.2)

47.2 Adaptive Beamforming

Frost [47.35] proposed a beamformer that relies on the
assumption that the ATFs between the desired source
and the array of sensors can be uniquely determined
by gain and delay values. In this section, we follow
Frost’s approach in the STFT domain and derive a beam-
forming algorithm for the arbitrary ATF case. We first
obtain a closed form of the LCMV beamformer, and
subsequently derive an adaptive solution. The outcome
is a constrained LMS-type algorithm. We proceed, fol-
lowing the seminal work of Griffiths and Jim [47.36],
with the formulation of an unconstrained adaptive solu-
tion namely, the transfer-function generalized sidelobe
canceller (TF-GSC). We initially assume that the ATFs
are known. Later, in Sect. 47.4, we present several alter-
natives for estimating the ATFs.

47.2.1 Frequency-Domain Frost Algorithm

Optimal Solution
Let Wy (k,€);m=1,..., M denote a set of M filters,
and define

WHk, 0) = (Wii(k, &) Wik, £) -+ Wik, 0)),

is only justified for segments which are longer than the
RIR Iength. Since RIRs tend to be very long, the con-
ditions allowing for this representation to hold cannot
be exactly met. We assume, however, that the STFT re-
lation is a reasonable approximation.) Z,,(k, £), S(k, £),
Np(k, £), Ny, (k, £), and N}n(k, £) are the STFT of the re-
spective signals. A, (k) is the ATF relating the speech
source with the m-th sensor. The vector formulation of

the equation set (47.2) is

Z(k, ) = A(k)S(k, £)+ N(k, £)

= A(k)S(k, £)+ Ng(k, £)+ Ni(k, £) , (47.3)

where

Z(k, €)= (Z1(k, £) Zo(k, £) -+ Zp(k, z))T,
A = (A1) Ask) - Au()"

N(k, £) = (N1(k, ) Na(k, €) - Ny(k, 0)",

Ny(k, €) = (N} (k, €) N3k, €) -+ Nk, )",

Ny(k, €)= (Nj(k, €) N5(k,£) --- Ny(k, e))T.

where the superscript H denotes conjugation transpose.
A filter-and-sum beamformer, depicted in Fig.47.1, is
realized by filtering each sensor signal by W) (k, £) and
summing the outputs,

Yk, 0) = WH(k, ©)Z(k, 0)
= WHk, O AK) Sk, €) + Wk, O)N(k, £)
+ WHk, ON(k, 0)

2 Yok, £)+ Yy ok, €) + Yy 1(k. £) |

(L7.4)

ZM (k’ l)

Fig. 47.1 Filter-and-sum beamformer
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47.2 Adaptive Beamforming

where Ys(k, £) is the signal component and Y, (k, £)
and Y, ((k, £) are the stationary and nonstationary noise
components, respectively. The output power of the
beamformer is given by

E(Y(k, 0)Y*(k, £)}
= E{(WH(k, 0)Z(k, 0)ZP (k, ©)W(k, £)}
= WH(k, O)dzzk, OOW(k, £),

where ¢zz(k, £) 2 E{Z(k, OZH(k, £)} is the power
spectral density (PSD) matrix of the received signals.
We want to minimize the output power subject to the
following constraint on Y(k, £):

Yo(k, ) = WH(k, ) A(k)S(k, )
= F*(k, O)S(k, 0),
where F'(k, ) is some prespecified filter, usually
a simple delay. Without loss of generality we assume

hereinafter that ¥ (k, £) = 1. Hence, the minimization
problem can be stated as

min {WHK, Obzz(k, OW(K, 0)}
subjectto WH(k, ) A(k)=1. (47.5)

The minimization problem (47.5) is demonstrated
in Fig.47.2. The point where the equipower contours
are tangent to the constraint plane is the optimum vector
of beamforming filters. The perpendicular F(k) from the
origin to the constraint plane will be calculated in the
next section.

To solve (47.5) we first define the complex La-
grangian,

LW) = WHk, 0)® 7k, OW(k, £)
+A[WHE, 0)Ak) — 1]
+ 2 [AH K, OWE) — 11, (47.6)

where A is a Lagrange multiplier. Setting the derivative
with respect to W* to 0 [47.48] yields

Vi LW)Pzz(k, O)W(k, £)+ LA(k) = 0.

Now, recalling the constraint in (47.5), we obtain the
LCMYV optimal filter

T AR ® L (k, ©A®K)

This closed-form solution is difficult to implement, and
is not suitable for time-varying environments. Therefore
we often have to resort to an adaptive solution, which is
derived in the sequel.

(L7.7)

wh(k, 1) D, (k,) W(k,1) WEMY (& 1)

F(k) =

A (k)
[ET]

W(k,1)

I
|

Fig. 47.2 Constrained minimization

It is interesting to show the equivalence between
the LCMV solution (47.7) and the MSNR beam-
former [47.7], which is obtained from

WH(K, 0)A(k)|?
max Wk OAR) . (47.8)
W WH(k, O)@nn(k, O)W(k, )
The well-known solution to (47.8) is the (colored-noise)
matched filter

Wk, £) oc @y (k, OAK) .

If the array response is constrained to fulfil
WH(k, £)A(k) = 1, i.e., no distortion in the desired di-
rection, we have
—1
WMSNR (5 gy @ Nk, O)A(K) .
AH(R) @y \ (K, OA(K)

Using (47.3) it can be verified that

(47.9)

@77 = pss(k, OAGK) AN (k)
+@n.N, (k, )+ Py (K, )
= sk, OAK) AR () + Byn(k, £),  (47.10)

where ®yn(k, £) B Dy N, (k, O)+ PN, N, (k, £), the over-
all noise PSD matrix. Using the matrix inversion lemma,
it is shown in Appendix 47.B that

@k, OAK)
AH(R) BN (k, OAK)

This solution is identical to the solution of the MSNR
beamformer.

While both methods are shown to be equal, provided
that the ATFs A(k) are known, their behavior in the
case of unknown ATFs is different. Analysis of these
differences is given by Cox [47.47].

WEEMY (k) = (47.11)

Constraint plane: 4 (k) W(k,1) = 1

949
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Note also that, due to the nonstationary noise com-
ponent, the term @y (k, £) depends on the frame index.
This time dependence is one of the major factors lead-
ing to performance degradation in beamforming. We
address this problem by introducing the multichannel
postfilter in Sect. 47.6.

Adaptive Solution
Consider the following steepest-descent adaptive algo-
rithm:

Wk, £+1)

= Wi(k, £) — V= L(k, £)

=Wk, £) —pn[®zz(k, OW(k, £)+LAKk)] .
Imposing the look-direction constraint on W({+ 1, k)
yields

1= AR (OW(k, £+ 1)

= AR W(k, 0) — pA (k)@ 77 (k, OW(k, £)
— uAR ()AL .

Solving for the Lagrange multiplier and applying further
rearrangement of terms yields:

Wk, £+1)
= P()W(k, £) — uP(k)®zz(k, OW(k, £)+ F(k) ,
(47.12)

where

A AU (k)

A
PO=1=" w12

(47.13)

and

A Ak)
A
Further simplification can be obtained by re-

placing ®zz(k,¢) by its instantaneous estimator,
Z(k, ©)ZH(k, ), and recalling (47.4). We finally obtain,

(47.14)

F(k)

Wk, £+1)
= P(k)[W(k, €) — nZk, O)Y*(k, O)]+ F(k) .

The entire algorithm is summarized in Table 47.1.

Table 47.1 Frequency-domain Frost algorithm

W =0,k = F(k)

Wt +1,k) = P(k) [W(k, €) — Z(k, O)Y*(k, )] + F(k)
£=0,1,...

[P(k) and F(k) are defined by (47.13) and (47.14)].

47.2.2 Frequency-Domain Generalized
Sidelobe Canceller

In [47.36], Griffiths and Jim considered the case where
each ATF is a delay element (with gain). They obtained
an unconstrained adaptive enhancement algorithm, us-
ing the same linear constraint imposed by Frost [47.35].
The unconstrained algorithm is more tractable, reliable,
and computationally more efficient in comparison with
its constrained counterpart. In the adaptive solution Sec-
tion, we obtained an adaptive algorithm for the case
where each ATF is represented by an arbitrary linear
time-invariant system. We now repeat the arguments of
Griffiths and Jim for the arbitrary ATFs case, and de-
rive an unconstrained adaptive enhancement algorithm.
A detailed description can be found in [47.38].

Derivation
Consider the null space of A(k), defined by

N (k) 2 (W] AR )W =0} .
The constraint hyperplane,

Al = (W] AW = 1)
is parallel to N (k). In addition, let

R(K) 2 {kA(k)| for any real «}
be the column space. By the fundamental theorem of
linear algebra [47.49], R(k) L N (k). In particular, F(k)
is perpendicular to N (k), since F(k) = WA(I() €
R (k). Furthermore,

AR F (k) = AM () AG)(AR AGK) ™ = 1.

Thus, F(k) € A(k) and F(k) L A(k). Hence, F(k) is the
perpendicular from the origin to the constraint hyper-
plane, A(k). The matrix P(k), defined in (47.13), is the
projection matrix to the null space of A(k), N (k).

A vector in linear space can be uniquely split into
a sum of two vectors in mutually orthogonal subspaces
[47.49]. Hence,

Wk, €)= Wo(k, £)—V(k, £), (47.15)

where Wy(k, £) € R(k) and —V(k, ) € N (k). By the
definition of N (k),

V(k, £) = HEK)G(k, L),

where #€(k) is a matrix such that its columns span the
null space of A(k), i.e.,

AHHK) =0,

(47.16)

rank {H(k)} <M -1,
(47.17)
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where Ff(k) is usually called a BM (blocking matrix).
The outputs of the BM will be denoted, for reasons
that will be clear in the sequel, noise reference signals
U(k, £), defined as

Uk, 0) = H KO Z(k, 0) , (47.18)
where
Uk, €) = (Ua(k, €) Us(k, £) ... Up(k, 0)" .

The vector G(k,£¢) is a rank{Ff(k)}x1 vector
of adjustable filters. We assume hereinafter that
rank{#(k)} = M — 1. Hence, the set of filters is defined
as

Gk, 0) = (Ga(k, &) G3(k, €) ... Gu(k,0)" .
(47.19)
By the geometrical interpretation of Frost’s algorithm,
A(k)
A1
(Recall that F(k) is the perpendicular from the

origin to the constraint hyperplane, A(k).) Now, us-
ing (47.4), (47.15), and (47.16) we obtain

Wo(k, ) = F(k) = (47.20)

Y(k, £) = Yrpr(k, £) — Yanc(k, £) , (57.21)
where

Yegr(k, £) = Wh(k, O)Z(k, £)

Yanc(k, €) = GH(k, ) 1K) Z(k, 0) . (47.22)

The output of the constrained beamformer is a difference
of two terms, both operating on the input signal Z(k, £).
The first term, Yrpr(k, £), utilizes only fixed compo-
nents (which depend on the ATFs), so it can be viewed
as a FBF. The FBF coherently sums the desired speech
components, while in general it destructively sums the
noise components. Hence, it is expected that the signal-
to-noise ratio (SNR) at the FBF output will be higher
than the input SNR. However, this result cannot be guar-
anteed. We will elaborate on this issue while discussing
the performance analysis in Sect. 47.7.

We now examine the second term Yanc(k, £). Note
that

Uk, t) = HU(K)Z(k, €)
= HW)[AK)S(k, 0)
+ Ny(k, £) 4 Ny(k, £)]
= MK [Ny (k, €) + Ny(k, 0)] . (47.23)

The last transition is due to (47.17). It is worth mention-
ing that, when a perfect BM is applied, U(k, £) indeed

contains only noise components. In general, however,
HUOAK, 0) # 0, hence desired speech components
may leak into the noise reference signals. If the speech
component is indeed completely eliminated (blocked)
by #(k), Yanc(k, £) becomes a pure noise term. The
residual noise term in Ypggr(k, £) can then be reduced
by properly adjusting the filters G (k, £), using the mini-
mum output power criterion. This minimization problem
is in fact the classical multichannel noise cancellation
problem. An adaptive LMS solution to the problem was
proposed by Widrow [47.25].

To summarize, the beamformer is comprised of three
parts. An FBF Wy, which aligns the desired signal
components, a BM #(k), which blocks the desired
speech components resulting in the reference noise sig-
nals U(k, £), and a multichannel ANC G(k, £), which
eliminates the stationary noise that leaks through the
sidelobes of the FBF.

Noise Canceller Adaptation
The reference noise signals are emphasized by the ANC
and subtracted from the output of the FBF, yielding

Y(k, €)= [Wi(k, ©) — GP(k, ) 71 0)] Z(k, ) .
(47.24)

Let three hypotheses Hys, Hot, and H; indicate, re-
spectively, the absence of transients, the presence of
an interfering transient, and the presence of a desired
source transient at the beamformer output. The optimal
solution for the filters G (k, £) is obtained by minimizing
the power of the beamformer output during the station-
ary noise frames (i. e., when Hys is true) [47.2]. We note,
however, that no adaptation should be carried out during
abrupt changes in the characteristics of the noise signal
(e.g., a passing car). When the noise source position is
constant and the noise statistics is slowly varying, the
ANC filters can track the changes.

Let ®y N, (k, £) = E{Ns(k, £)Nt(k, £)} denote the
PSD matrix of the input stationary noise. Then, the
power of the stationary noise at the beamformer output
is minimized by solving the unconstrained optimization
problem:

min{[Wo(k, ) — H(k, OG (k. ot
x @y N, (k, O[Wo(k, £) — H(k, )G (k, O)]} .
(47.25)

A multichannel Wiener solution is given by (see
also [47.42,46])

Gk, 0) = [#"(k, )@ N, (K, Z)Jt’(k)]_l
x HU(k, BN N, (k, OWo(k, £) . (47.26)
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In practice, this optimization problem is solved by using
the normalized LMS algorithm [47.2]:

Gk, t+1)
Gk, 0)+ ﬁU(k, O)Y*(k, £) Hys true,

Gk, 0), otherwise,
(47.27)
where
Pegi(k, £) = ap Pest(k, € — 1)+ (1 —ap) |U (K, 0)||*
(47.28)

represents the power of the noise reference signals, g
is a step size that regulates the convergence rate, and o,
is a smoothing parameter in the PSD estimation process.

To allow for the use of the STFT, we further as-
sume that the ANC filters g, have a time-varying finite
impulse response (FIR) structure:

r ()= (gm -k, () -.. 8mrp(D).

Note, that the impulse responses are taken to be non-
causal, to allow for relative delays between the FBF and
the ANC branches.

In order to fulfill the FIR structure constraint
in (47.29), the filters update is now given by

(47.29)

Uk, 0)Y*(k, £)

GU+1,k)=Gk, 0)+
(E+1LE )

)

FIR

GU+1,k)<—GU+1,k). (47.30)

The operator IR includes the following three stages,
applied per filter: transformation of G,,(£ + 1, k) to the
time domain, truncation of the resulting impulse re-
sponse to the interval [—- K7, Kr] (i. e., imposing the FIR
constraint), and transformation back to the frequency
domain. The various filtering operations involved in the
algorithm (multiplications in the transform domain) are
realized using the overlap-and-save method [47.50,51].

The resulting algorithm is merely an extension of
the original Griffiths and Jim algorithm for the arbitrary
ATF case. Figure 47.3 depicts a block diagram of the
algorithm. The steps involved in the computation are
summarized in Table 47.2. The matched beamformer
Wo(k) and the BM F(k) are assumed to be known at
this stage.

47.2.3 Time-Domain Generalized
Sidelobe Canceller

The most commonly used GSC structure is the classi-
cal time-domain counterpart of the algorithm, proposed

Zy(k,1) O
Z(k1) D YFBF(k:{)
Zs(k, 1) O : WOH @ : Y (k, 1)
. Yane (k1) :
Il —Or :
|

Fig. 47.3 Linearly constrained adaptive beamformer
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Table 47.2 Frequency-domain GSC algorithm

1) Fixed beamformer:
Yepp(k, £) = WE (k) Z(k £)

2) Noise reference signals:
Uk, £) = #H(K)Z(k, ¢)

3) Output signal:
Y (k, £) = Yegr(k, £) — GM(k, OU(k, £)
4) Filters update
G(t+1,k) = Gk, €)+ g LEDKD
GU+1,0 R Ge+1,k),
where

Pesi(k, £) = ap Pt (6 — 1K)+ (L —ap) Y, | Zin (&, £)[
5) Keep only nonaliased samples

by Griffiths and Jim [47.36]. For completeness of the
exposition, we present now the time-domain algorithm.

Assuming that the array is steered towards the
desired speech signal (refer to steering-related issues
in Sect. 47.4), the FBF is given by

M
YEBE(?) = Z Zm(t) ,

m=1

which is the simple delay-and-sum beamformer. Un-
der the same delay-only steered array assumptions, it is

evident that
un() =zm()—z210); m=2,... , M,

are noise-only signals and that the desired speech com-
ponent is cancelled out.

The filters g,, are updated in the time domain. The
error signal (which is also the output of the enhancement
algorithm) is given by,

M Kr
YO =yeE() =Y Y gmiOun(t—i).
m=2i=—Kj,

(47.31)
Define, form =2, ..., M:
(1)
= (um(t+Kr) -~ un(®) - un(t—Kg)).
Then, the adaptive normalized multichannel LMS solu-
tion is given by
gm(t+1)

= gn()+ —— (Y0 m=2.... M,
Pest(t)

where

M
Pest() =Y llum®]* . (57.32)

m=1

47.3 Fixed Beamformer and Blocking Matrix

In the previous section, we derived the generalized
sidelobe canceller and showed that it includes a fixed
beamformer, given in (47.20), a blocking matrix, given
in (47.17), and a multichannel ANC, given in (47.26).
Note that knowledge of the ATFs A(k) (assumed to be
slowly time variant) suffices to determine both the FBF
and BM. In this section we present three methods for
determination of the fixed beamformer and the blocking
matrix.

47.3.1 Using Acoustical Transfer Functions

A typical RIR is depicted in Fig. 47.4. It can be seen that
the impulse response can get very long (several thousand
taps), which makes the estimation task quite cumber-
some. This impulse response was generated by the image
method [47.52] proposed by Allen and Berkley (The au-
thors thank E. A. P. Habets from TU Eindhoven, The
Netherlands, for providing an efficient implementation

Amplitude
0.035

0.03
0.025
0.02
0.015
0.01
0.005
0

—-0.005
—-0.01

—-0.015
0 0.05 0.1 0.15 0.2

Time (s)

Fig. 47.4 A typical room impulse response with a rever-
beration time of 0.4 s
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of the image method.). By this method, the RIR is gen-
erated by simulating multiple reflections of the sound
source from the room walls. Two distinct segments of
the impulse response can be observed. The first consists
of the direct propagation path with a few early, distin-
guishable reflections. The second segment consists of
overlapping random arrivals, with an exponentially de-
caying envelope. This segment is usually referred to as
the tail of the RIR. Using this model we can estimate the
various blocks of the GSC.

Assuming that A(k) is known, we have by (47.22),
(47.20), and (47.3)

Yrgr(k, £)
st 0+ A0 1Nk o1 N 0]
AP R

The first term on the right-hand side is the signal term,
and the second is the noise term. The FBF in this
case is hence a matched filter-and-sum beamformer (see
also [47.16,17]).

Considering the blocking matrix, there are many al-
ternatives for blocking the desired speech signal in the
reference channels. One alternative is calculation of

Un(k, €) = An(K)Zn—1(k, £) — A1 (K) Z (k, £)

form=2,..., M. Any other combination of the micro-
phone signals is applicable.

(47.33)

47.3.2 Using Delay-Only Filters

The simplest and yet the most widely used model for the
ATF is a delay-only model. Arbitrarily defining the first
microphone as the reference microphone we have

-2 - 2: -2
Ay = (1 e X™ eI %™ . eTIE ™),
where 12, ... , Ty are the relative delays between each
microphone and the reference microphone.

In the delay-only case, the FBF simplifies to the
delay-and-sum beamformer, given by
2

Wo(k):(l ei%”rz ei%m eiKTM)'

To avoid noncausal delays, a fixed amount of delay can
be introduced.
It can easily be verified that the matrix

—elfn _d¥n | _dfn
0 0
H(k) = 0 1 ... 0 (47.34)
0 0 1

is a proper BM under the assumption of delay-only im-
pulse response. This BM, originally proposed Griffiths
and Jim [47.36], performs delay compensation and sub-
traction. It can be regarded as steering M — 1 null beams
towards the desired speech signal.

47.3.3 Using Relative Transfer Functions

We have shown, on the one hand, that the RIR can be
very long and hence difficult to estimate. On the other
hand, the use of delay-only model suffers from severe
undermodeling problems. A good compromise is the use
of the relative transfer function (RTF) between sensors.
Define the RTFs as the ratio

Ay(k)  As(k)
Aty Ak e

AM(k)) _ AT (k)
A1) Ak
(47.35)

AT 2 (1

Note that the ATF may have zeros outside the unit circle,
as it is not necessarily a minimum-phase system. Thus
to ensure stability of the RTFs we allow for noncausal
systems. Therefore, we model the impulse response of
the m-th ratio as

an (1) = (Am,—q, (1) - Gmgg(D)). (47.36)
It was experimentally shown that RTFs are usually much
shorter than the corresponding ATFs [47.38], hence the
FIR assumption may be justified.

Replacing in (47.20) the actual ATFs by the RTFs,
the FBF becomes

A(k)
A2

Wo(k) = (47.37)

By (47.22) and (47.3) we then have

Yrgr(k, £) = A1 (k)S(k, £)
~H

A (k)

+ ———— [Ns(k, £)+ Nk, 0)] .

||A(k)||2[ (k, £)+ Ny(k, £)]

(47.38)

Thus, when Wy(k, £) is given by (47.37), the signal
term of Yrpr(k, £) is the desired signal distorted only by
the first ATF, A1(k). Note, however, that all the sensor
outputs are summed coherently.

It can be easily verified that the use of the follow-
ing BM suffices for completely eliminating the desired
speech signal, provided that the RTFs are correctly
modeled and estimated:
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— A%y —A%(k) ... —A%, (k)
1 0 ... 0
F (k)= 0 | 0 . (47.39)
0 0 1

For this choice of the BM, the reference signals are given
by,

Un(k, €) = Zn(k, ) — Ap(K)Z1 (K, £);
m=2,3,...,M. (47.40)

47.4 ldentification of the Acoustical Transfer Function

The specific choice of the ATFs model governs the
applicable estimation method.

47.4.1 Signal Subspace Method

Affes and Grenier [47.37] prove that the identification
of source-to-array impulse responses is possible by sub-
space tracking. Assume that the approximation in (47.3)
is valid, i. e., the multichannel correlation matrix of the
received signals is given by

D77(k, £) = dss(k, AR A" (k) + BN (K, €) .

Assume also that the noise signal is spatially white,
i.e., ®yn(k, L) = af(k, OI (an extension for spatially
nonwhite noise is described in [47.53]). The eigenvalues
of the received signals correlation matrix are given by

M=ok t) I=1,...,M—1

N . (47.41)
Ay > o} (k, £) otherwise .

From the matrix structure we conclude that the most
dominant eigenvector of ®zz(k, £) is given by A(k) (up
to a scale factor). Hence, using the eigenvalue decompo-
sition of ®zz(k, £), we can estimate the desired signal
ATFs. In the case of spatially nonwhite noise signals
the generalized eigenvalue decomposition (GEVD), us-
ing the known noise correlation matrix ®yn(k, £), can
be applied instead [47.53].

Yang [47.54] proved that finding the most dominant
eigenvectors is equivalent to minimizing a quadratic
cost function. For the following derivation it is more
convenient to deal with normalized terms. Let

Z(k, ©) = A(K)S(k, €)+ N(k, €)
)
~ lA®

2 A()S(k, ©)+ Nk, ©) , (47.42)

IACIIS(k, £)+ N(k, £)

where A(k) éA(k)/ JA(k)|| is the normalized ATFs
vector, namely AH(k)A(k) —1, and S(k, €) 2 |A®)]|
S(k, £) is the normalized desired speech signal.

When only the single most dominant eigenvector
is required (as in the discussed case), Affes and Gre-
nier [47.37] showed that Yang’s criterion simplifies to
the following minimization,

E(IT— AWA" (012K, 0] . (47.43)

Similar to the approximation used in the derivation
of LMS algorithm, the received signal correlation
matrix is approximated by its instantaneous value
P ZZA(k, )~ Z(k, OZH(K, o). Fu{thermore, approximat-
ing AH(k, £)A(k, £) ~ 1, where A(k, £) is an estimate of
A(k) at the current time instant, the following sequential
procedure can be derived:

Ak, L+1)
— Ak, 0)+ pa(k, O[Z (K, €)

~ ~H ~H
— Ak, OA (k, OZ(k, OI[A (k, O)Z(k, O)]* .
(47.44)

Define Vrgr(k, £) = AH(k, €)Z(k, £), and observe that
the desired signal component at Yrpr(k, £) is S(k, £).
Then,

Ak, £+1)
= Ak, 0) + pa(k, OIZ(k, £)
— Ak, OYrpr(k, O1Vipp(k, ©) . (47.45)
Now, it is easy to verify that

Z(k, £)— fx(k, O)Yepr(k, £)

are noise-only signals, provided that the estimate A(_k, £)
converges to the true normalized ATFs vector A(k).
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Hence, it can serve as a BM output, namely U(k, €).
(There is a slight difference between the proposed BM
and the conventional BM, as the number of the compo-
nents in U(k, £) in the current scheme is M rather than
M — 1 as with the latter.) Collecting all terms we finally
have

Ak, 0+ 1)
— Ak, ©)+ pak, OUK, Ok, €. (57.46)

Note that this procedure yields an estimate of the nor-
malized ATFs rather than the ATFs themselves. Affes and
Grenier [47.37] argue that ||A(k)|| is invariant to small
talker movements and could be estimated in advance.

As a final remark, we would like to point out that the
estimation procedure in (47.46) has many similarities to
the method of Hoshuyama et al. [47.55] for robust design
of the BM, and with the decorrelation criterion presented
by Weinstein et al. [47.56] and further adapted to the
GSC structure by Gannot [47.57]. We will elaborate
on this issue in Sect.47.5 when discussing the robust
beamformers.

47.4.2 Time Difference of Arrival

When a delay-only steering is applied, an estimation of
the time difference of arrival between the microphones
suffices to model the entire impulse response. It should
be noted however, that this procedure usually undermod-
els the RIR and is not sufficient for the problem at hand.
Many algorithms were proposed for estimation the time
difference of arrival (TDOA) [47.58,59]. A survey of
state-of-the-art methods for TDOA estimation can be
found in [47.60]. This topic is beyond the scope of this
chapter.

47.4.3 Relative Transfer Function
Estimation

We present two methods for RTF estimation. The first is
based on speech nonstationarity [47.38] , and the second
employs the speech presence probability [47.61,62].

Using Signal Nonstationarity
In this section, we review the system identification tech-
nique proposed by Shalvi and Weinstein [47.63] and later
used by Gannot et al. [47.38] in the context of micro-
phone arrays. This method relies on the assumptions
that the background noise signal is stationary, that the
desired signal s(¢) is nonstationary, and that the support
of the relative impulse response between the sensors

is finite and slowly time varying. (Note that the rela-
tive impulse response between the sensors is generally
of infinite length, since it represents the ratio of ATFs.
However, in real environments, the energy of the relative
impulse response often decays much faster than the cor-
responding ATF [47.38]. Therefore, the finite-support
assumption is practically not very restrictive.)
Rearranging terms in (47.40) we have

Zn(k, 0) = Ap(K)Z1(k, £) + Up(k, £) . (47.47)

We assume that the RTFs are slowly changing in time
compared to the time variations of the desired signal.
We further assume that the statistics of the noise sig-
nal is slowly changing compared to the statistics of the
desired signal. Consider some analysis interval during
which the ATFs are assumed to be time invariant and the
noise signal is assumed to be stationary. We divide that
analysis interval into frames. Consider the i-th frame.
By (47.47) we have
o0 (k)= Ap()®L. (k) + @y, 2, (k) ,

i=1,...,1, (47.48)

where [ is the number of frames, <I>g.)zj (k) is the cross-
PSD between z; and z; at frequency bin & during the i-th
frame, and ®,,, ., (k) is the cross-PSD between u,, and
z1 at frequency bin &, which is independent of the frame
index due to the noise stationarity. Now, equations (47.2)
and (47.40) imply that, when the signal is present,

Un(k, €) = N5, (k, £) — A (k)N (k, £) (47.49)
Z1(k, €) = A1 (k)S(k, )+ N§(k, €) . (7.50)

Let &1 (k), ®¢. (k), and & (k) be estimates
of @Y. (k), ®9_ (k), and ®,,,, (k), respectively. The
estimates are obtained by replacing expectations with
averages. Note that (47.48) also holds for the estimated
values. Let 85,’1) k)= @5’; 2, (k) — ®y,,7, (k) denote the es-
timation error of the cross-PSD between z; and u,, in
the i-th frame. We then obtain,

o0 (k)= Ap()®Y). (k) + @y, 2, (k)

+eD(k), i=1,...,1. (47.51)

If the noise reference signals Uy, (k, ), m=2,... , M
were uncorrelated with Z;(k, £), then the standard sys-
tem identification estimate, A, (k) = &, -, (k)/®;, -, (k),
could be used to obtain an unbiased estimate of A, (k).
Unfortunately, by (47.49) and (47.50), U, (k, £) and
Z1(k, £) are in general correlated. Hence in [47.63] it is
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proposed to obtain an unbiased estimate of A (k) by ap-
plying the least-squares (LS) procedure to the following
set of overdetermined equations

&) (k)
o | 2
X =
<I>§,’21<k>
o (k) 1 eV k)
2
BRI N £ (k)
. q’umzl(k)
E{?l (k) 1 o4 >(k)
L2G0+e, (67.52)

where a separate set of equations is used for each m =
2,..., M. The weighted least-squares (WLS) estimate
of 0 is obtained by

(}im(m ) 6
D,z (k)
= arg ngn(x —GOIWx-Go)

= (GUWG) ' GHwx (17.53)

where W is a positive Hermitian weighting matrix, and
GHWG is required to be invertible.

Shalvi and Weinstein suggested two alternative
weighting matrices. One alternative is given by

I i
wi =47 T (47.54)

0, i#]
where T; is the length of subinterval i, so that longer in-
tervals have higher weights. In this case, (47.53) reduces
to
Al
_ (D221 () P22y (R)) — (B2, (R)) (D2, (K))
(62,2, () — ($eyz, (0))2

(47.55)

with the average operation defined by

A Z, 1Tz§0(l)(k)
Yo T

{p(k)) = (47.56)

Another alternative for W, that minimizes the covariance
of 0, is given by

B L
Wi = E/QSZIZI(k)v 1= . (u7.57)

Q’Bumum (k) 0 ) i 75]

where B is related to the bandwidth of the window used
for the cross-PSD estimation [47.63]. With this choice
of the weighting function, (47.53) yields
(1/ 212, () ( ey, (K))
(G121 N1/ ey () — 1
(D221 (k) [ P12, (K))

Ak =

- = (47.58)
{2121 () (1/ ¢z, (K)) — 1
and the variance of X(k) is given by
var{A(k)} = 1 buun K1/ ¢z, (K))
BT (22, (k) {1/ bz, (k) — 1
(47.59)

where T £ Zle T; is the total observation interval. Spe-
cial attention should be given to choosing the frame
length. On the one hand, it should be longer than the cor-
relation length of z,,(¢), which must be longer than the
length of the filter a;, (). On the other hand, it should be
short enough for the filter time invariance and the noise
quasistationarity assumptions to hold.

A major limitation of the WLS optimization in
(47.53) is that both the identification of A(k) and the
estimation of the cross-PSD ¢,,,,, (k) are carried out
using the same weight matrix W. That is, each subin-
terval i is given the same weight, whether we are trying
to find an estimate for A(k) or for ¢y,,;, (k). However,
subintervals with higher SNR values are of greater im-
portance when estimating A(k), whereas the opposite is
true when estimating ¢, ;, (k). Consequently, the opti-
mization criterion in (47.53) consists of two conflicting
requirements: one is minimizing the error variance of
A(k), which pulls the weight up to higher values on
higher SNR subintervals. The other requirement is min-
imizing the error variance of ¢y, (k), which rather
implies smaller weights on higher SNR subintervals. For
instance, suppose we obtain observations on a relatively
long low-SNR interval of length 7p, and on a relatively
short high-SNR interval of length 77 (77 < Tp). Then,
the variance of A(k) in (47.59) is inversely proportional
to the relative length of the high-SNR interval, T /(Ty +
T1). That is, including in the observation interval addi-
tional segments that do not contain speech (i. e., increas-
ing Tp) increases the variance of A(k). This unnatural
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consequence is a result of the desire to minimize the vari-
ance of ¢, ;, (k) by using larger weights on the segments
that do not contain speech, while increasing the weights
on such subintervals degrades the estimate for A(k).

Another major limitation of RTF identification using
nonstationarity is that the interfering signals are required
to be stationary during the entire observation interval.
The observation interval should include a certain num-
ber of subintervals that contain the desired signal, such
that ¢, ;, (k) is sufficiently nonstationary for all k. Unfor-
tunately, if the desired signal is speech, the presence of
the desired signal in the observed signals may be sparse
in some frequency bands. This entails a very long obser-
vation interval, thus constraining the interfering signals
to be stationary over long intervals. Furthermore, the
RTF A(k) is assumed to be constant during the obser-
vation interval. Hence, very long observation intervals
also restrict the capability of the system identification
technique to track varying A(k) (e. g., tracking moving
talkers in reverberant environments).

Using Speech Presence Probability
In this section, we present a system identification ap-
proach that is adapted to speech signals. Specifically,
the presence of the desired speech signal in the time—
frequency domain is uncertain, and the speech presence
probability is utilized to separate the tasks of system
identification and cross-PSD estimation. An estimate
for A(k) is derived based on subintervals that contain
speech, while subintervals that do not contain speech are
of more significance when estimating the components of
Bz, (0.

Let the observed signals be divided in time into over-
lapping frames by the application of a window function
and analyzed using the STFT. Under the same consid-
erations leading to the estimation procedure based on
speech nonstationarity (and based on the assumption
that the RTFs can be modelled by short filters), (47.48)
is still valid. Now using (47.48)-(47.50) and the fact that
the desired signal s(¢) is uncorrelated with the interfering

signals n;,(¢); m=1,2,..., M, we have
by (k, O = A ()| A1) s s (k, ©)
+ P ns (k. £) . (47.60)

Writing this equation in terms of the PSD estimates, we
obtainform=2,3,... , M

bazi (kO = A (0| A1 P (k)b s (k. ©)
+ Gy (k, )+ £ (K, £)
= Apn()dss(k, 0)+ Puy s (k, O)+ ek, €) , (67.61)

where ¢,,(k, ) denotes an estimation error and
bss(k, £) = | A1 |2(k)ss(k, €) represents the PSD of the
speech signal component in microphone 1. This gives
us L equations, which may be written in a matrix form
as

Bz (K 1) = Gy s (K, 1)

- Pz (K 2) = Gy s (K, 2)
qu (k) = .
Do (ks L) = g sy (k, L)
b5k, 1) emk, 1)
bssk,2) | em(k,2)
— ) Am )
bss(k, L) em(k, L)
2 s(k) Ay (k) + £ (k) . (47.62)

Since the RTF A,, (k) represents the coupling between
the primary and reference sensors with respect to the
desired source signal, the optimization criterion for
the identification of A,,(k) has to take into account
only short-time frames which contain desired signal
components. Specifically, let I(k, £) denote an indi-
cator function for the signal presence [I(k, ) =1 if
P55k, £) #0, i.e., during Hy, and I(k, £) =0 other-
wise], and let I(k) represent a diagonal matrix with the
elements [I(k, 1), I(k,2), ..., I(k, L)] on its diagonal.
Then the WLS estimate of A(k) is obtained by

Ay, = argmin {[Ie,, ]"W(Ie,, 1}
Am

=arg r%in {[Iifm - $§§Am]H

IWI, — dssAm]}
= [d&TWIds] ™' GLIWT,, , (47.63)
where the argument k has been omitted for notational
simplicity. Recognizing the product I W I as the equiva-
lent weight matrix, the variance of A is given by
([47.64] p. 405)
i T -1, T
var{A,,} = ((bg JWI¢s §) b IWIcov(ey,)
X TWgss ($TTWIgss) (47.64)

where cov(g,, ) is the covariance matrix of g,,,. The matrix

W that minimizes the variance of A therefore satisfies
([47.64] prop. 8.2.4)

IWI =1I[cov(e,)] ' I. (47.65)
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This choice of W yields an asymptotically unbiased
estimator

A= {&s: Tcovie,)] s}
x 5 1[cov(em)] ™ T, (47.66)

which is known as the minimum variance or Gauss—
Markov estimator. Substituting (47.65) into (47.64), we
obtain the variance of the resulting estimator

var{A} = {55 T[cov(e,)] T ss) (47.67)

The elements of cov(e,) are asymptotically given by
(see [47.61])

covlen(k, £), ek, £)]

R i = /
_ |55k O buy, kO if=E

0, otherwise.

Under the assumption that hypothesis Hy, is false, i.e.,
the noise is stationary, ¢,,,u,, (k, £) is independent of the
frame index £ (in practice, it suffices that the statistics
of the interfering signals is slowly changing compared
with the statistics of the desired signal). Denoting by (-),
an average operation over the frame index ¢

1 L
(ol 0) = 7 Dk ). (47.69)
=1

and substituting (47.68) into (47.66) and (47.67) we
obtain

Am(k)
Ik, OBz, (ks ©) = G s (K, O]}
— _ s (47.70)
(I(k. ) dss(k, ©)
~ Buryn (k)
Var{Am(k)}L Ttk 0 desk. O . (47.71)

Note that, for a given frequency-bin index k, only frames
tpat contain speAech [1(k, £) # 0] influence the values of

A (k) and var{fim (k)}. In contrast to the nonstationarity
method, including in the observation interval additional
segments that do not contain speech does not increase

the variance of A,, (k) for any k. However, the proposed
identification approach requires an estimate for /(k, £),
i. e. identifying which time—frequency bins (k, £) contain
the desired signal. In practice, the speech presence prob-
ability p(k, £) can be estimated from the beamformer

output (see Sect. 47.6), and an estimate for the indicator
function is obtained by

L, if p(k, &) = po ,

0, otherwise,

Ik, )= ©7.72)

where po (0 < pg < 1) is a predetermined threshold.
Note, also that the output of the beamformer con-
sists of the filtered version of the desired speech
5(t), when the RTFs is used in the FBF branch.
The parameter po controls the trade-off between
the detection andAfalse alarm probabilities, which
are dgﬁned by Pp =P {pk,£)> po|I(k,£) =1} and
Pea = P {pk, £) > po | I(k, £) = 0}. A smaller value of
po increases the detection probability and allows for
more short-time frames to be involved in the estimation
of A(k). However, a smaller value of po also increases
the false alarm probability, which may cause a mismodi-

fication of A(k) due to frames that do not contain desired
speech components.

The identification algorithm based on speech pres-
ence probability requires estimates for ¢, ., (k,¢),
¢s3(k, £), and @ps s (k, £). An estimate for ¢, -, (k, £)
is obtained by applying a first-order recursive smooth-
ing to the cross-periodogram of the observed signals,
Zn(k, £) Z}(k, £). Specifically,

Gy (ks £) = a5 bz oy (ky £— 1)
+(1—ag)Zy(k, £) ZT(k, 0),
(47.73)

where the smoothing parameter o (0 <o < 1) de-
termines the equivalent number of cross-periodograms
that are averaged, Ny ~ (1+a5)/(1 —as). Typically,
speech periodograms are recursively smoothed with an
equivalent rectangular window of 7y = 0.2 s long, which
represents a good compromise between smoothing the
noise and tracking the speech spectral variations [47.65].
Therefore, for a sampling rate of 8 kHz, an STFT win-
dow length of 256 samples and a frame update step
of 128 samples, we use o = (T -8000/128 — 1)/(T -
8000/128 4+ 1) ~ 0.85.

To obtain an estimate for the PSD of the desired sig-
nal, we can use the output of the multichannel postfilter
discussed in Sect. 47.6, during speech presence, i. e., H;
is true.

dss(k, €) = a pss(k, £ — 1)
+(1—a)lk, 0)|Y(k, 0)* . (L7.74)

The cross-PSD of the interfering signals, n;,(7)
and nj(¢), is estimated by using the minima-controlled

#°L% | H Med
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recursive averaging (MCRA) approach [47.66, 67].
Specifically, past spectral cross-power values of the
noisy observed signals are recursively averaged with
a time-varying frequency-dependent smoothing param-
eter during periods for which Hys is true

B, (k, £) = Gk, £) b, sk, £— 1)
+ B [1 —au(k, )] Zn(k, £) Zi(k, 0)
(47.75)
where &y(k,£) is the smoothing parameter (0 <
ay(k, €) <1),and B (B > 1) is a factor that compensates
the bias when the desired signal is absent [47.67]. The

smoothing parameter is determined by the signal pres-
ence probability, p(k, £), and a constant o, (0 < o0y < 1)

that represents its minimal value

dulk, ) = au+(1 —a) pk, £) . (47.76)

The value of &, is close to 1 when the desired signal
is present to prevent the noise cross-PSD estimate from
increasing as a result of signal components. It decreases
linearly with the probability of signal presence to allow
a faster update of the noise estimate. The value of oy
compromises between the tracking rate (response rate to
abrupt changes in the noise statistics) and the variance of
the noise estimate. Typically, in the case of high levels of
nonstationary noise, a good compromise is obtained by
ay = 0.85 [47.67]. Substituting these spectral estimates
into (47.70) we obtain an estimate for A,, (k).

47.5 Robustness and Distortion Weighting

Beamformers often suffer from sensitivity to sig-
nal mismatch. The GSC in particular suffers from
two basic problems. First, nonideal FBF can lead to
noncoherent filter-and-sum operation. Doclo and Moo-
nen [47.27] and Nordholm et al. [47.68] use spatial
and frequency-domain constraints to improve the ro-
bustness of beamformers. The second problem, which is
the concern of this survey, is the leakage phenomenon,
caused by imperfect BM. If the desired speech leaks into
the noise reference signals U(k, £) the noise canceller
filters will subtract speech components from the FBF
output, causing self-cancellation of the desired speech,
and hence a severe distortion. Note that, even when the
ANC filters are adapted during noise-only periods, the
self-cancellation is unavoidable. The goal of this section
is to present several concepts for increasing the robust-
ness of the GSC structure and reducing its sensitivity to
signal mismatch.

Cox et al. [47.7] presented a thorough analysis of ar-
ray sensitivity. The array output SNR is evidently given
by

Pss(k, OWH AR AT ()W (k)

SNRout(k, £) = WH(k)<I>NN(k, LHW(k)

Now assume that the signal’s ATFs are different from
the ATFs used for designing the LCMV beamformer,
i.e., A(k) = A+ €(k). Assume also that the spatial cor-
relation matrix of the perturbation €(k) is given by
E{e(k)ef'(k)} = 021, where I is the identity matrix of
dimensions M x M. Namely, we assume that the pertur-
bation components are uncorrelated. Hence the expected

output SNR is given by
E{SNRou(k, £)}

 pssk, OWH ) (AK)AM (k) + o 2T) W (k)
B WH(k) @y (k, €)W (k)

(47.77)

Define the sensitivity of the array to the ATFs perturba-
tion as J(k, £)

n 707 E(SNRou(k, )}
0= B SNRouh Ol

B WH (k)W (k)

— WH) A AH(OW(k)

(47.78)

The resulting expression is the reciprocal of the white-
noise gain of the array. Using the array constraint
WHRAK) =1 we finally obtain the following ex-
pression for the sensitivity of the array to the ATFs
perturbation,

J(k, £) = WHOW (k) . (17.79)

Specifically, the array sensitivity is equal to the norm
of the beamformer weights. Hence, reducing the sen-
sitivity of the array is equivalent to constraining the
norm of the array filter coefficients. Due to (47.15) the
array filters can be decomposed into two orthogonal fil-
ters, W(k) = Wo(k) — V(k) = Wo(k) — H(k)G(k, £).1tis
therefore sufficient to constrain the adaptive filter norm,
namely GH(k, )G (k, £) = |G (k, £)||* < 2(k, £), where
§2(k, ¢) is a prespecified norm. The GSC structure is
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modified to fulfil the norm constraint, as follows:
Uk, O)Y*(k, )

G (k) =Gk, 0)+ , (47.80)
T
GU+1,k)
G'(h IG' K2 < 20k, £+ 1)
4“(2(’,““) IG/(k) otherwise.
G (B
(47.81)

Finally, the conventional FIR constraint is imposed on
the norm-constrained filters

GU+1,k) <= G(L+1,k).

Based on this concept, Hoshuyama et al. [47.55,
69] proposed several methods for addressing the ro-
bustness issue, concentrating on the self-cancellation
phenomenon, caused by the leakage of the desired
speech signal to the BM outputs U(k, £). This phe-
nomenon is emphasized in reverberant environments,
in the case where the BM only compensates for the rela-
tive delay [as in (47.34)]. In general there are two ways
to mitigate this leakage problem. First, an improved
spatial filtering can be incorporated into the design of
the BM. Claesson and Nordholm [47.22] proposed to
apply spatial high-pass filter to cancel out all signals
within a specified frequency and angular range. Huarng
and Yeh [47.45] analyzed the leakage phenomenon and
applied a derivative constraint on the array response,
yielding wider tolerance to pointing errors.

A second cure for the leakage problems involves
applying constraints on the ANC filters. Hoshuyama
et al. [47.55] proposed several structures combining
modifications for both the BM and the ANC blocks.
The conventional delay-compensation BM is replaced
by an adaptive BM based on signal cancellers. Two con-
straining strategies may be applied to the involved filters.
The first strategy uses norm-constraint, and the second
uses the leaky LMS adaptation scheme. Haykin [47.1]
proved that both strategies are equivalent. The modified
BM outputs, form =1, ..., M, are given by

Un(k, £) = Zp(k, €) — H,, (k, O)Yrpr(k, ) ,
(17.82)

where H,, (k, £) are updated as to minimize the power of
U, (k, £), by cancelling all desired speech components.
Whenever, the SNR in Yrpr(k, £) is sufficiently high, the
blocking ability of the structure is improved.

Gannot [47.57] showed that this equation, in con-
junction with the expression for the beamformer output

Y(k, £) = Yegr(k, £) — GH(k, OU (k, ¢) ,

is closely related to the decorrelation criterion proposed
by Weinstein et al. [47.56]. A different decorrelation
based structure was later proposed by Fancourt and
Parra [47.70].

Two alternative schemes are proposed for adapt-
ing the filters H,,(k,¢). (Originally, Hoshuyama
et al. [47.55] stated their formulation in the time
domain using the original GSC structure. Here we
state the frequency-domain counterpart of the proposed
algorithm. The first to propose frequency domain imple-
mentation of Hoshuyama’s concepts were Herbordt and
Kellermann [47.71,72].) The first scheme is the leaky
LMS,

H,y,(k, £41)
=1 —8)Hpu(k, £)
Mh
+———— Uk, O)Yigpk, £) (47.83)
|Yegr(k, £))2 " FBE
for m=1,..., M. The regular FIR constraint, omit-

ted for the clarity of the exposition, is then applied.
The second scheme constrains the filter coefficients to
a predefined mask, yielding form =1, ..., M:

H,, (k, £+1)
Mh %
= Hp(k, )+ ————— Uy (k, O)Yir(k, £)
" [Yepr(k, O " FBr
(47.84)
and
H(+1,k)

¢10w(k, £+ 1) Hy/n(k, £+ 1) = ¢10w(k, L+ 1) s
up(k, L+ 1) Hy (k, £41) < pyp(k, £41) ,

H),(k,£+1) otherwise.
(47.85)

The ANC filter is either adapted by the leaky LMS al-
gorithm or the norm-constrained adaptation mechanism
proposed by Cox (see (47.81)). As a concluding remark
summarizing Hoshuyama’s methods, we draw the reader
attention to the resemblance of the proposed adaptation
of the BM filters and the subspace tracking procedure
presented by Affes and Grenier depicted in (47.46).
Spriet et al. [47.33] adopted a different approach
to mitigating the leakage problem, by modifying the
adaptation criterion for the ANC filters, G(k, £). The
minimization criterion in (47.25) is altered to deal with
the leakage problem. Let, Y}z (k, £) be the speech com-
ponent at the FBF output. Let US(k, £) and U"(k, £) be
the speech and noise (without distinction between sta-
tionary and transient noise signals) components in the

G°l#h|H Med
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reference signals, respectively. Then, the filters G(k, £)
minimize the following expression

E{||Yspr(k, £) — GH(k, O)US(k, O+ Uk, 0)]%} .

Since the speech and noise signals are uncorrelated, the
above expression can be restated as

E{IGHk, Uk, 0)|1%}

+ E{||Yigr(k, £) — GH(k, OUS(k, 0)*} . (47.86)
Note, that the first term is related to the noise signal
and the second term to the speech distortion. Hence,
the Wiener filter design criterion can be easily gener-
alized [47.26] to allow for a trade-off between speech
distortion and NR, by incorporating a weighting fac-
tor p € [0, 00). The resulting criterion is then given
by

RE{IGH (k, Uk, 0)]*)

+ E(|Vigptk, ©) — GH(k, OUSK, 0|2} . (47.87)

It is easily verified that the corresponding minimizer is

1 -1
G(k, Z) = <_¢USUS + ¢U"U") ¢UY1§'BF N
M
(47.88)

where

®ysys = E{US Kk, O)(US(k, )1},
Byngn = E{U"(k, YUk, O)1},
duys,. = E(US(k, O(Vigr(k, £)*} .

47.6 Multichannel Postfiltering

Postfiltering methods for multimicrophone speech
enhancement algorithms have recently attracted an in-
creased interest. It is well known that beamforming
methods yield a significant improvement in speech qual-
ity [47.9]. However, when the noise field is spatially
incoherent or diffuse, the NR is insufficient [47.77]
and additional postfiltering is normally required [47.78].
Furthermore, as nonstationary noise cannot, in general,
be distinguished from speech signals, a significant per-
formance degradation is expected in nonstationary noise
environment.

Most multimicrophone speech enhancement meth-
ods consist of a multichannel part (either delay and sum

Using the reference signals definitions we have
Sysys = HU(k, O)Bssk, O)H (K, L),
Sy = HU(k, O)@NN(K, O)H (K, L),
dusyy,, = H(k, O)®ssk, OWo(k, £) . (47.89)
Since ®gg(k, £) is not available it can be evaluated using
Pss(k, ) = ®zz(k, {) — Pnn(k, £)

and ®ny(k, £) is estimated while the speech signal is
absent. Doclo and Moonen [47.73] prove that the out-
put SNR after NR with the above speech distortion
weighted multichannel Wiener filter (SDW-MWF) is al-
ways larger than or equal to the input SNR, for any filter
length, and for any value of the trade-off parameter p
between NR and speech distortion.

This solution for the ANC filters constitutes the
speech distortion regularized generalized sidelobe can-
celler (SDR-GSC) structure. Spriet et al. [47.33] further
proposed to incorporate a single-channel postfilter,
which compensates for the distortion imposed by the
structure in case of speech leakage into the reference
signals. Further discussion of this structure is beyond
the scope of this survey. In [47.74], the authors propose
a stochastic gradient-based implementation of their cri-
terion. The robustness of both the multichannel Wiener
filter and the GSC structures are analyzed by Spriet
et al. [47.75] in the context of hearing-aid application.

Improving the robustness of the BM is an ongoing
research topic. An interesting direction was taken by
Low et al. [47.76]. The authors propose to incorporate
concepts adopted from the BSS discipline to improve
the separation of the speech and noise signals and hence
reducing the amount of leakage of the desired signal into
the reference noise signals.

beamformer or GSC [47.36]) followed by a postfilter,
which is based on Wiener filtering (sometimes in con-
junction with spectral subtraction). Numerous articles
have been published on the subject, e.g., [47.79-87] to
mention just a few.

In general, the postfilters can be divided into two
groups. The first is a single-channel postfilter which acts
as a single-microphone speech enhancement algorithm
on the beamformer output. Multichannel postfilters, on
the other hand, explicitly use the spatial information,
extracted by the GSC structure, to gain better dis-
tinction between the speech signal and the transient
noise.
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47.6.1 MMSE Postfiltering

Simmer et al. [47.78] address the general problem of the
single-channel postfilter. They first derive the multichan-
nel Wiener filter for estimating the speech signal, S(k, £)
from the microphone signals Z(k, £) given in (47.3).
Then, they show that the Wiener filter can be factorized
into a multiplication of the LCMV (Frost) beamformer
given in (47.7) and a single-channel Wiener filter that
depends on the output speech and noise signals.

To show this, we will start with the multichannel
Wiener filter, which is given by

wWiener(e ¢y = &, L (k, O)®zs(k, £) (47.90)
where ®z7 is given in (47.10) and
@75k, €) = E{Z(k, £)S*(k, £)}
= A(k)pss(k, €) . (47.91)
Hence,
WWiener(k, Z)
= (ss(ks OAMAK) + @yn (K, 0)
X Pss(k, OAK) . (57.92)

Omitting, for the clarity of the exposition, the explicit
time- and frequency-domain dependence and using the
matrix inversion lemma yields

WWiener(k, g)
<I>_1 ¢ss<p1:]1lvAAH<I)1:’IlV
= NN~ ﬁ ¢55A
1+ ¢ AHOLL A

_ (1  peAAteg)

T NN ) @] Pss A
1+¢ssAH<I’MlVA) NN®¥ss

— ¢9§ - Q&}VA
1+ ¢ AH® LA

= Pss ‘DRUIVA . (47.93)
s +(AHOG A | AH®L LA

(The derivation here is a slight modification of the results
introduced in [47.78].) The reader can easily identify
the second multiplier as the MSNR beamformer (47.8)
which was shown to be equivalent to the LCMV beam-
former (47.11).

We turn now to analyzing the first term in the
multiplicative expression. The PSD of desired signal
component at the output of the LCMV beamformer is

given by
oy, (k, £)
— ¢SS(WLCMV)HAAHWLCMV
2
Aol A
= s <7AH¢IX§VA) = s - (47.94)
NN

As expected, the LCMYV is a distortionless beamformer.
The noise component at the beamformer output is given
by,

ov,v,k, £)
He 1
— (WECMVyH LMV AH ‘I’ileA .
(AHeyyA)
1
= (47.95)
AHQ LA

Using (47.94) and (47.95), the first term in the multi-
channel Wiener filter can be rewritten as

Pss
s+ (AHO N A) ™
_ o,y (k, £)
by, v, k, O)+ dy.v,(k, )

1

(47.96)

which is evidently recognized as the single-channel
Wiener filter applied to the LCMV beamformer output. It
was therefore proven that the multichannel Wiener filter
can be factorized into a product of the LCMV beam-
former and a single-channel Wiener postfilter applied to
the beamformer output,

WWiener(k7 E)
_ drv, (k, 0)
 dy,v, (k. O+ @y, (k, ©)
Wiener postfilter
@y n(k, OAK)
AHR) B\ (k, OA(K)

LCMYV beamformer

(47.97)

Several algorithms have been proposed for designing
the postfilter; all differ in their treatment of the single-
channel Wiener postfilter estimation. Zelinski [47.79]
was probably the first to apply a postfilter to the output
of a microphone array (delay and sum beamformer in his
formulation). Zelinski proposed the following Wiener
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filter estimation
WZClinSki(k E)
FOI=D) Dint 3 jis1 RelZitk, OZ; (k. 0]
M1 Zik, o) '

(47.98)

Later, postfiltering was incorporated into the Griffiths
and Jim GSC beamformer by Bitzer et al. [47.86, 87].
The authors proposed to use two postfilters in suc-
cession. The first is applied to the FBF branch, and
the second to the GSC output. In directional noise
source and in the low-frequency band of a diffused
noise field, correlation between the noise compo-
nents at each sensor exists. While the first postfilter
is useless in this case, the latter suppresses the
noise.

Simmer and Wasiljeff [47.88] showed that Zelin-
ski’s postfilter has two disadvantages. First, only minor
SNR improvement can be expected in frequencies, for
which the coherence function between the received
noise signals is high (i.e., coherent noise sources).
Second, for frequencies with a low coherence func-
tion, the noise PSD is overestimated by a factor M
(the number of microphones). They propose to mit-
igate the second disadvantage by slightly modifying
the noise estimation, to obtain an estimate of the noise
PSD at the output of the beamformer, rather than at its
input.

In diffused noise field the noise coherence func-
tion tends to be high in lower frequencies, whereas
in higher-frequency bands it tends to be low. The
cutoff frequency depends on the distance between mi-
crophones (see further discussion in Sect.47.7). This
property is the cause for the first drawback of Zelin-
ski’s postfilter. It was therefore proposed by Fischer
and Kammeyer [47.83] to split the beamformer into
three nonoverlapping subarrays (with different inter-
microphone distances) for which the noise coherence
function is kept low. To avoid grating lobes, bandpass
filters with corresponding cutoff frequencies, are applied
to the beamformer output. Marro et al. [47.43] improved
this concept and further modified the Wiener postfilter
estimation. A comprehensive survey of these postfilter-
ing methods can be found in [47.78]. McCowan and
Bourlard [47.89,90] develop a more-general expression
of the postfilter estimation, based on an assumed knowl-
edge of the complex coherence function of the noise
field. This general expression can be used to construct
a more-appropriate postfilter in a variety of different
noise fields.

47.6.2 Log-Spectral Amplitude Postfiltering

A major drawback of single-channel postfiltering tech-
niques is that highly nonstationary noise components
are not addressed. The time variation of the interfering
signals is assumed to be sufficiently slow, such that the
postfilter can track and adapt to the changes in the noise
statistics. Unfortunately, transient interferences are often
much too brief and abrupt for the conventional tracking
methods.

Transient Beam-to-Reference Ratio
Generally, the TF-GSC output comprises three com-
ponents: a nonstationary desired source component,
a pseudostationary noise component, and a transient in-
terference. Our objective is to determine which category
a given time—frequency bin belongs to, based on the
beamformer output and the reference signals.

Recall the three hypotheses Hps, Hoi, and Hj that
indicate, respectively, the absence of transients, the pres-
ence of an interfering transient, and the presence of
a desired source transient at the beamformer output (the
pseudostationary interference is present in any case).
Then, if transients have not been detected at the beam-
former output and the reference signals, we can accept
the Hps hypothesis. If a transient is detected at the
beamformer output but not at the reference signals, the
transient is likely a source component and therefore we
determine that Hjp is true. On the contrary, a transient
that is detected at one of the reference signals but not
at the beamformer output is likely an interfering com-
ponent, which implies that Hyy is true. If a transient is
simultaneously detected at the beamformer output and
at one of the reference signals, a further test is required,
which involves the ratio between the transient power
at beamformer output and the transient power at the
reference signals. The discussion here is partly based
on [47.77]. A real-time version of the method that in-
corporates adaptive estimation of the ATFs is introduced
in [47.91].

Let 8 be a smoothing operator in the power-spectral
domain,

8Y(k, )

=os-8Y(k,£—1)

w
+(—ag) Y bilY(k—i, O, (47.99)
i=—w
where o (0 <as <1) is a forgetting factor for the

smoothing in time, and b is a normalized window
function (Zw b; = 1) that determines the order of

i=—w
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smoothing in frequency. Let M denote an estimator
for the PSD of the background pseudostationary noise,
derived using the MCRA approach [47.66,67]. The deci-
sion rules for detecting transients at the TF-GSC output
and reference signals are

Ay(k, O = 8Y(k, 0/ MY (K, ©) > Ao,
8U;(k, £)
MUk, £)

respectively, where Ay and Ay denote measures

of the local nonstationarities, and Ag and A; are
the corresponding threshold values for detecting tran-
sients [47.92]. The transient beam-to-reference ratio

(TBRR) is defined by the ratio between the transient

power of the beamformer output and the transient power

of the strongest reference signal

8Y(k, £) — MY (k,0)

max {8U;(k, €)— MU;(k, £)}
2<i<M

(47.100)

Apk, £) 2 max

} > Ay, (47.101)
2<i<M

2k, 0) =

(47.102)

Transient signal components are relatively strong at the
beamformer output, whereas transient noise components
are relatively strong at one of the reference signals.
Hence, we expect £2(k, £) to be large for signal tran-
sients, and small for noise transients. Assuming there
exist thresholds §2h;gn(k) and 210w (k) such that

Q(k, O gy, < $1ow(k) < $2nigh(k) < 2(k, O)|

(47.103)

the decision rule for differentiating desired signal com-
ponents from the transient interference components is

Hoy @ ys(k, £) < 1 or £2(k, £) < $210w(k)

Hy @ ys(k, €) = yo and $2(k, £) > $2nigh(k) ,

H; : otherwise,

(47.1084)

Yes —l

Hy,

where
A Yk, O
k)= ——
e )

represents the a posteriori SNR at the beamformer
output with respect to the pseudostationary noise, yg de-
notes a constant satisfying P (ys(k, £) > yo | Hos) < €
for a certain significance level €, and H; designates
a reject option where the conditional error of making
a decision between Hy, and Hj is high.

Figure 47.5 summarizes a block diagram for the hy-
pothesis testing. The hypothesis testing is carried out in
the time—frequency plane for each frame and frequency
bin. Hys is accepted when transients have neither been
detected at the beamformer output nor at the reference
signals. If a transient is detected at the beamformer out-
put but not at the reference signals, we accept Hy. On
the other hand, if a transient is detected at one of the
reference signals but not at the beamformer output, we
accept Hyy. If a transient is detected simultaneously at
the beamformer output and at one of the reference sig-
nals, we compute the TBRR §2(k, £) and the a posteriori
SNR at the beamformer output with respect to the pseu-
dostationary noise y;(k, £) and decide on the hypothesis
according to (47.104).

(47.105)

Log-Spectral Amplitude Estimation
We address now the problem of estimating the time-
varying PSD of the TF-GSC output noise component,
and present the multichannel postfiltering technique.
Figure 47.6 describes a block diagram of the multichan-
nel postfiltering. Following the hypothesis testing, an
estimate g(k, £) for the a priori signal absence probabil-
ity is produced. Subsequently, we derive an estimate
pk, ) 2 P(H|Y,U) for the signal presence prob-
ability, and an estimate ):d(k, £) for the noise PSD.

Yes @ No
Yes |

Hoy

Fig. 47.5 Block diagram for hypoth-
esis testing
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TFE-GSC absence o PSD . |
M-1 robabilit probability estimation estimator
M propabiiity estimation stmat (OM-LSA)
. . estimation
Hypothesis testing [——|

Fig. 47.6 Block diagram of multichannel postfiltering

Finally, spectral enhancement of the beamformer output
is achieved by applying the optimally-modified log-
spectral amplitude (OM-LSA) gain function [47.93],
which minimizes the MSE of the log-spectral amplitude
under signal presence uncertainty.

Based on a Gaussian statistical model [47.94], the
signal presence probability is given by

pk, £)

q(k, ) B
_{l—l—l_q(k’e)[l—l-é(k,f)]exp[ U(k,E)]} ,
(47.106)

where &(k, £) E As(k, £)/dn(k, £) is the a priori SNR,
As(k, £) is the desired signal PSD at the beamformer
output An(k,¢) is the noise PSD at the beam-
former output, vu(k, £) 2 y(k, 0) &k, 0)/[1 +E&(k, 0)],
and y(k, £) 2 |Y(k, €)|2 /An(k, £)1s the a posteriori SNR.
The a priori signal absence probability G(k, £) is set to
1 if the signal absence hypotheses (Hos or Hy) are ac-
cepted, and is set to O if the signal presence hypothesis
(Hy) is accepted. In the case of the reject hypothesis H;,
a soft signal detection is accomplished by letting g(k, £)
be inversely proportional to §2(k, £) and y;(k, £):

gk, £)

{ 70 — Vs(k, £)  2nigh — 2(k, £) }
= max , .
vo—1 $2nigh — 210w

(47.107)
The a priori SNR is estimated by [47.93]
Ek, ) =aKp (k. —Dy(k, £ —1)
+ (1 —o)max {y(k,£)—1,0} , (47.108)
where « is a weighting factor that controls the trade-off

between NR and signal distortion, and
o0

s EKO) 1 [ et
KH](k, E)—mexp 5 / —dt

is the spectral gain function of the log-spectral amplitude
(LSA) estimator when signal is surely present [47.95].
An estimate for noise PSD is obtained by recursively
averaging past spectral power values of the noisy mea-
surement, using a time-varying frequency-dependent
smoothing parameter. The recursive averaging is given
by

An(k, €+ 1)

= an(k, Ohn(k, £)+ B[1 — an(k, ONY (k, O,
(47.110)

where the smoothing parameter &y(k, £) is determined
by the signal presence probability p(k, £),

dn(k, €) 2 o+ (1 — ) p(k, £) | (47.111)

and f is a factor that compensates the bias when signal
is absent. The constant o, (0 < oy < 1) represents the
minimal smoothing parameter value. The smoothing pa-
rameter is close to 1 when signal is present, to prevent
an increase in the noise estimate as a result of signal
components. It decreases when the probability of signal
presence decreases, to allow a fast update of the noise
estimate.

Table47.3 Values of the parameters used in the imple-
mentation of the log-spectral amplitude postfiltering for
a sampling rate of 8 kHz

Normalized LMS: a, =09 un = 0.05
ATF identification: N =10 R=10
Hypothesis testing: as =0.9 Yo =4.6
Ap = 1.67 A =181
Q10w =1 $nigh =3
b=(0.25 0.5 0.25)
Noise PSD estimation: on = 0.85 =147
Spectral enhancement: a=0.92
Knin = —20dB
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47.7 Performance Analysis

The estimate of the clean signal STFT is finally given
by

Sk, €)= K(k, O)Y(k, €) , (47.112)
where
K(k, &) = {Kp, (k, 0} kil &0 (47.113)

is the OM-LSA gain function and K, denotes a lower
bound constraint for the gain when signal is ab-

47.7 Performance Analysis

The use of actual signals (such as noisy speech
recordings in room environment) demonstrates the abil-
ity of the TF-GSC algorithm to reduce the noise
while maintaining the desired signal spectral content
(Sect.47.8). However, it is also beneficial to perform
analytical evaluation of the expected performance, es-
pecially for determining the performance limits. While
the D-GSC [47.36] is widely analyzed in the liter-
ature, the more-realistic arbitrary ATFs scenario, is
only superficially treated. In more-complex environ-
ments such as reverberating room this assumption is
not valid, and may result in severe degradation in
the performance. Furthermore, most references ad-
dress the NR obtained by the algorithm but do not
present any measure of distortion imposed on the
desired signal, even in the simple delay-only ATFs.
In this section we will analyze both the NR of the
TF-GSC structure (while using the RTFs rather than
the ATFs themselves) and the distortion it imposes. For
a thorough performance evaluation of the multichan-
nel postfilter (for the two-channel case) please refer
to [47.96].

47.7.1 The Power Spectral Density
of the Beamformer Qutput

Using (47.24) and (47.37), the algorithm’s output is
given by

Y(k, £)

AH
= A0 g4 06"k 0 R W ZE 0,

| Ak)||2

where only estimates of the RTFs, j(k) [and }?(k)],
rather than their exact values, are assumed to be known.
Using this expression, the PSD of the output signal is

sent. The implementation of the integrated TF-GSC
and multichannel postfiltering algorithm is summarized
in Fig. 47.6.

Typical values of the respective parameters, for
a sampling rate of 8§ kHz, are given in Table 47.3. The
STFT and its inverse are implemented with biorthogo-
nal Hamming windows of 256 samples length (32 ms)
and 64 samples frame update step (75% overlapping
windows).

given by
@y (k, ) = E[Y(k, £)Y*(k, £)]

{ [ 1 2y
=E{| —— A"z 0
| Ak)||?

— Gk, O F k) Z(k, 0), }

x [ _—— AMWZk, 0
| AK)|1?

H
— Gk, O F N W) Z(k, 0), }

(L7.114)

Opening brackets and using the PSD definition
®z7(k, £) = E{Z(k, ©)Z" (k, £)} yields,

1 2 2
By (k, ) = — AR @k, O)Ak)

| Ak)||*
Gk, o) 7" k)

1AGK)|2

x @77k, 0)AK)

L AWe sk 0F WG )

| Ak)||?
+GH(k, O)H () ® 77 (k, O)HK)G (k) .

(47.115)

The output PSD depends on the input signal Z(k, £) and
the optimal multichannel Wiener filter, given by (47.26),
calculated during frames for which hypothesis Hpy; is
true. Using the independence of the desired signal and
the noise signal, the NR and the distortion imposed by
the algorithm can be calculated separately by deriving
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expressions for the output PSD in the following two
situations:

0] k, £ H
@ik, 0= | PN O o
bss(k, OA)AR (k) Hy |
yielding
Dyy(k, ) = @) (k,£) Hos = noise reduction,

<I>§y(k, ¢) H; = distortion.

Note that for simplicity we calculate the NR only during
Hyg, 1. e., while only stationary noise signal is present.
For a performance evaluation in the nonstationary case,
please refer to [47.96].

Using (47.26) and (47.115), we obtain the output
signal PSD:

1 2 2
Dyy(k, £) = — X {AH(k)<I>ZZ(k, 0)A(k)

lAdo|*

— AM @y, (k, O)H(K)
[ ()@ w, v, (k, OF )]
T U7 (k, OAGK)

— AM ()@ 5k, )T
[#M k)@, N, k, OFB)]
U@, (K, OAK)

+ AN B, , (k, O)F(K)
[A )@, N, (K, OFK)]
H (B2 (k, O FH (k)

x [ (k) @, v, (k, OFK)] !
FHG) By (k, AR} . (57.116)

This complicated expression depends on various param-
eters: the input signal PSD, ®zz(k, £), the stationary
noise PSD used for calculating the optimal filters,
P, N, (k, £), and the RTFs estimate A(k) [which is also
used for the BM #(k)]. This expression will be used in
Subsects. 47.7.2 and 47.7.3 for deriving general expres-
sions for the distortion imposed by the algorithm and the
obtainable NR, respectively. These general expressions
will be evaluated for several interesting cases.

47.7.2 Signal Distortion

The distortion imposed by the algorithm can be cal-
culated by the general expression given in (47.116)

for a signal Z(k, K):A(k){(k, £). Assume a per-
fAect estimate of the RTFs A(k), is available, i.e.,
A(k) = Ak) = %. Thus, using the signal PSD expres-
sion ®zz(k, £) = pgs(k, £)A(k)AH (k) and the identity
HU(k)A(k) =0, expression (47.116) reduces to

S
oy (k, £)

|F R 30 Ho g
= sk, £)— A (k)AK)AT(K)Ak
Psth, O = A DADATOAK)

dss(k, O] A1 (K] .

(47.117)

The filter A;(k) is the ATF relating the source signal
and the first (arbitrarily chosen as the reference) sensor.
This distortion cannot be eliminated by the algorithm.
Note that this distortion is due to the use of the RTFs,
rather than the ATFs themselves. Using direct estimate
of the ATFs will avoid this distortion affect. Actually, it
imposes on the output signal the same amount of distor-
tion imposed on the arbitrary reference sensor. Hence,
we define the total distortion caused by the algorithm by
normalizing the output,

@3, (k, £)

DIS(k, 6) = —22—"—— .
0 141 ()2 ¢ss (k. €)

(47.118)

Hence, a value of DIS(k, ¢) = 1 indicates a distortion-
less output. This value is obtained whenever an exact
knowledge of the RTFs is available.

The distortion level demonstrates only weak depen-
dence on the noise field, both for the delay-only and
complex ATF cases. For details please refer to [47.77].

47.7.3 Stationary Noise Reduction

We calculate now the amount of obtainable station-
ary NR. When the noise is nonstationary, the use of
a postfilter becomes more important. A performance
analysis of the multichannel postfilter (for the two-
channel case) in nonstationary noise environment can
be found in [47.96].

We will use again the general expression for the out-
put signal given by (47.116), this time with a noise signal
as the input signal, i.e., Z(k, £) = Ny(k, £) [the same
noise signal used for calculating the optimal Wiener
filter (47.26)]. The expression (47.116) now reduces
to
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@7, (k. £)

~H 2 ~H
_A Ry 0AR A k)
1A 1AGo]*
x BN, (k, OFR K[ AT RPN Nk, 0)]
x ()@ . (k, OAK) .

The first term of the equation can be identified
as ®ppp(k, £), the FBF component of the output
PSD when a noise-only signal is applied to the ar-
ray,

®Pp(k, ©) = E{YPgpk, O Yigpk, O]}
_ AY@) @y, N, (k, OAK)
A+
Another interesting figure of merit is the extra

NR obtained by the noise cancelling branch (see
also [47.40)),

(47.119)

(47.120)

Drepk, £)

o) (k, 0)
Expressions (47.119), (47.120), and (47.121) can be
used for calculating the NR obtained by the algorithm
and to determine the major contributor for this NR. As-
suming small errors regime, the error in estimating A (k)
has only minor influence on the NR. Therefore, we will
assume, throughout the NR analysis, perfect knowledge
of the RTFs, i.e., A(k) = A(k).

The resulting expressions for the noise cancella-
tion depends on the noise PSD at the sensors. We
calculate now the expected NR of the algorithm for
three important noise fields: coherent (point source),
diffused (spherically isotropic), and incoherent (noise
signals generated at the sensors; e.g., amplifier noise,
are assumed to be uncorrelated).

NRanc(k, £) = (47.121)

Coherent Noise Field
Assume a single stationary point source noise signal
with PSD ®,,,, (k, £) and assume that b, () are slowly
time-varying ATFs relating the noise source and the m-th
sensor. Define,

Ni(k, £) = B(k)Ns(k, €) ,
where
BT(k) = (Bi(k) Ba(k) --- Bu(k)).

The PSD matrix of the noise component at the sensors’
signals is given by,

N, (k, €)= @, (k, ©)B(k)B (k) 4l ,

where Iis an M x M identity matrix, and € — 0. The last
term is added for stability reasons (see Appendix 47.A).
For B(k) # A(k), the achievable NR is infinite, i. e.,

®N(k,0)=0 for B(k)# Ak).

Thus, perfect noise cancellation is achieved. The deriva-
tion of this result is given in Appendix 47.A. Note
that this is not a surprising result, since for M > 2 the
Wiener filter can entirely eliminate the noise compo-
nent. This result is valid for all ATFs B(k) provided
that B(k) # A(k), i.e., the noise and the signal do not
originate from the same point. If B(k) = A(k) the noise
and desired signal are indistinguishable and no NR is
expected. If B(k) # A(k) the proposed algorithm can
eliminate any point source noise signal as good as the
D-GSC can eliminate a directional noise signal in the
delay-only propagation case (see [47.40]).

It is also interesting to explore the contribution of
the FBF block to the NR,

Dlppk, 0)
_ ARy K, OA®K)

A4
AR ®y 0 (k, OBR)BI)AK)

| Ak)||*

= P& O 31 gy [AH(k)B(k)]H :

A4

Sy (dB)
25

—-100
0
1000

2000
3000

4000 0
Frequency (Hz)

Fig. 47.7 Array output for directional noise field for linear array
with M = 5 sensors for delay-only ATFs
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NRaxc (dB)

Although the FBF combines the desired signal coher-
ently, it does not necessarily improves the SNR. The
infinite NR is due to the ANC branch.

The expected NR in the simple case of delay-only
ATFs is shown in Fig. 47.7. We optimize a linear array
of M =5 microphones to cancel noise impinging on
the array from the direction 8 =40°. We present the
output signal of the array as a function of the frequency
and the array steering angle 6. It is clearly shown that
the main lobe is maintained (i. e., low distortion), while
anull is constructed at all frequencies at the noise angle.
The main lobe is wider in the lower-frequency band.
This result is in good agreement with the theory, since
at w = Orad/s there is no phase difference between the
signals at the sensors. Similar results were obtained by
Bitzeretal. [47.40,41]. The general ATFs case is further
explored in [47.77,97].

Diffused Noise Field

In highly reverberant acoustical environment, such as
a car enclosure, the noise field tends to be diffused (see
for instance [47.42,98]). A diffused noise source is as-
sumed to be equidistributed on a sphere in the far field
of the array. The cross-coherence function between sig-
nals received by two sensors (i,/) with distance d;; is
given by

_ enw® sinGkdy/o)
Ln; (k) = ‘I’N,-N,-(k)q’Nij(k)_ kdijfe

.
-

=
4000 0
Frequency (Hz)

Fig. 47.8 Extra noise reduction of noise cancelling branch for dif-
fused noise field using a linear array with M =35 sensors and
delay-only ATFs

where c is the speed of sound [47.98]. Thus, the coher-
ence matrix is given by,

1 Inynvy (k) -+ Ty vy, (K)
FN2N1 (k) 1 e FNzNM(k)
I'(k)= )
Iy N, (k) 1
The noise PSD at the sensors input is
q)Nst (k7 E) = ¢nsng(k! Z)1_‘(k) .

Using (47.120), the noise PSD at the FBF output is given
by

~ H ~
Pan(k, A" ()" (k)A(k)

lAGI*
The extra NR obtained by the ANC is given by

Pppr(k, £) =

NRanc(k, £)
= {1=[A" W) r ) H [ HE ) () FeK)] ™"

x R CROAWRIA" k) T doAd)) ]}
(47.122)

This expression depends on the RTFs A(k), assumed to
be error free, and on the coherence function I”(k).

The same M = 5 microphone array used for the di-
rectional noise case is now used for the diffused noise
field. In Fig. 47.8 we show the extra NR obtained by the
ANC for various steering angles and for the entire fre-
quency band. It is clear that almost no NR is obtained
in the high-frequency band and only relatively low NR
in the low-frequency band. The obtained results are in
accordance with the results in [47.39,42].

Incoherent Noise Field
For incoherent noise field we assume that the noise at
the sensors has no spatial correlation.

PN, (k, £) = Py (k, O,

where I is an M x M identity matrix. Using (47.119)
with perfect knowledge of the RTFs, i.e., A(k) = Ak),
and with the prespecified ®y . (k, £) we obtain,
<I>‘y‘y(k, £)
D, , (k,0) ~
_ ninh( ) )AH(k)
Al

x (1= # ) [ H k)]~ 7 ()} Ak) .
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a) Frequency (Hz) b) Frequency (Hz)

Time (s)
e) Frequency (Hz)
4000 T

Time (s)

Fig.47.9 (a) Original clean speech signal at microphone #1: “Five six seven eight nine”. (b) Noisy signal at microphone
#1. (c) TF-GSC output. (d) Single-channel postfiltering output. (e) Multichannel postfiltering.
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It can be easily verified that,
~H
A" (k) H (k) = 01x(pm—1) -

Furthermore, as (k) (k) is a positive matrix, its
inverse always exists. Thus, the contribution of the
noise cancelling branch is zero, and the NR is only at-
tributed to the FBF. The noise power at the output is
thus,

47.8 Experimental Results

In this section, we compare the performance of a system,
consisting of the TF-GSC and multichannel postfilter, to
a system consisting of a TF-GSC and a single-channel
postfilter.

A linear array, consisting of four microphones with
5 cm spacing, is mounted in a car on the visor. Clean
speech signals are recorded at a sampling rate of § kHz
in the absence of background noise (standing car, silent
environment). A car noise signal is recorded while the
car speed is about 60 km/h, and the window next to the
driver is slightly open (about 5 cm; the other windows
are closed). The input microphone signals are generated
by mixing the speech and noise signals at various SNR
levels in the range [—5, 10] dB.

Offline TF-GSC beamforming [47.38] is applied
to the noisy multichannel signals, and its output is
enhanced using the OM-LSA estimator [47.93]. The re-
sult is referred to as single-channel postfiltering output.

47.9 Summary

In this chapter, we concentrated on the GSC beam-
former, and presented a comprehensive study of its
components. We showed, that the GSC structure is
closely related to other array optimization criteria, such
as the Wiener filter. We described multimicrophone post-
filters, based on either the MMSE or the log-spectral
estimation criteria, which are designed for improving
the amount of obtainable NR, with minimal degradation

,..H ~
A" (k) Ak)
@ (k, £) = Bk, €) = B, (k, ) ——=——"
W FBr 1A
@,k 0)
I AK)|12

Again, no NR is guaranteed by this structure, and the
result depends on the RTFs involved.

In the case of delay-only ATFs, the FBF branch be-
comes a simple delay-and-sum beamformer, thus the
expected NR is M, the number of sensors.

Alternatively, the proposed TF-GSC and multichannel
postfiltering is applied to the noisy signals. A subjective
comparison between multichannel and single-channel
postfiltering was conducted using speech sonograms
and validated by informal listening tests. Typical ex-
amples of speech sonograms are presented in Fig. 47.9.
For audio samples please refer to [47.99]. The noise
PSD at the beamformer output varies substantially
due to the residual interfering components of speech,
wind blows, and passing cars. The TF-GSC output is
characterized by a high level of noise. Single-channel
postfiltering suppresses pseudostationary noise compo-
nents, but is inefficient at attenuating the transient noise
components. By contrast, the system which consists
a TF-GSC and multichannel postfilter achieves superior
noise attenuation, while preserving the desired source
components. This is verified by subjective informal
listening tests.

of speech quality. The robustness of the GSC structure
to imperfect estimation of its components was ana-
lyzed. Various methods were proposed for increasing
the robustness of the GSC, and especially, for avoid-
ing leakage of the desired signal into the noise reference
signals. Finally, the performance of the TF-GSC was the-
oretically analyzed and experimentally evaluated under
nonstationary noise conditions.
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47.A Appendix: Derivation of the Expected Noise Reduction

for a Coherent Noise Field

For clarity of the exposition we will omit the time and
frequency dependence in the derivation. Recall (47.119)
and define

Xk, 6) 2 x
—1
= oy N H(H Oy N H) HOy N, .
(47.A1)
Denote,
XEKxLXM,

where, KX = @y, H, L= (HTOy y H)"!, and M =
HH®y y.. Thus, X is a multiplication of three terms.
Starting from £ and using the detailed noise struc-
ture,
L = [HP(¢pon BB +eT) #] ™
= [pan(H B H B +ert 7]

1

1

Table 47.4 Twelve terms used for calculating X = K LM

KiLiMy =102 BBRI(HM 36" BB
_ 143 o BBU e 30~ 3eH pBH e(5¢H 30~ 1 pBH
KoMy =—g By X don BH (e 30~ 1 H B

—102 BB gt (3" 30)" ' 3HBBH ;
@3 BB ge(3¢H 30)~1 31 )2 pH

LMy = B a1 P By
= ¢nnBBH 5
FoLi My = g H(HIH) T HUBBY ;
2 8 30)~ 1 3" gBH 30361 3¢)~1 pBH
JoLy My -9, oon B 70— 7B
= —pmH(HNF) " HUBBY
¢nnJ€(J(HJ€)_1J€HBBHJ€(Jt’HJ()_ sHppH
Ko L5 M (énn BA 33 36)~1 3¢H )2
_#Ha 1 HppH
BHye3H 300~ 15Hp >
KiLiMy = pon BBEH(HE30) 1 41
2 BBH 3e(eH 301 3¢H BBH ge(3¢H 30)—1 5eH
HaLaMa — o BHH#(#H3)~ 1 #HB
= — BB H(HH 7)1 T
¢§n BBH ge(3¢H 70y~ 3eH pBH g0(3¢H 30— 1 31
FaLs Mo @mBH s 0)~ T 7T B)?
__BBHyeeH g0~ 5
~ " BHxHy)-1xHp °
FolLiMy = eH(FHIH) T HH
_p2totso Lt gt stz Lt
HaLaMa B (7 g0~ 1 5eHp J
Koy L3 My 2¢nnJ€(J€HJ€)_IJ€HBBHJ€(J€HJ€)_1J(’H ;

(¢pnn BH 7(3¢H 30)=1 3¢H p)2

If B= A, i.e., the noise source is located exactly at
the desired signal position, then HHUB =0, and the
calculation of the inverse is straightforward, yielding

= (eHHIO), K =eH, and M =T, Collect-

ing all terms we obtain, X = e J((]fHJ(‘) 1 geH €29 0,
i.e., the signal at the BM output is zero, as expected. The
total noise part of the output is given by,

Py, = Ppgp
Aoy y A AY(nBBY teI)A
IA]4 IA[4
222 bl Al

where the last transition is due to B = A. This is exactly
the no-distortion result obtained in Sect.47.7.2, for the
desired signal direction.

@
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IX)
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For the general case, B # A, we use the matrix Now, calculating X,
inversion lemma, yielding: X = KLM = BynHLH Dy
L= (et 30! = ($on BB™ + £1) H L HT (¢n BB + 1)
& A H
B eiz¢nn(J€HJ€)_lJ€HBBHJ€(J€HJ€)_1 = (K1 + K)FH (L1 + Lo+ L3)H (M) 4—(:‘741)3,)
1+ Lgun BEH (1 36) - HH B . . g ‘
€ with the obvious definitions of K, K2, L1, L2, L3,
Now, using the approximation ﬁ ~1—p,forp—0 .M 1, apd M>. Opening the brackets we have twelve terms
(u properly defined), yields, given in Table 47.4.
Note, that terms I and II, terms IV and V, and terms
OC:l( g7 }g)fl VII and VIII eliminate each other, and that terms VI,
& IX, X, XI, and XII vanish as & approaches to zero.
L (s 70) "1 BB 3¢ (61 30) ! Only term III is left, i.e., X = ¢noa BBM. Substituting
- bon BRI (HHF0) -1 1B X into (47.119) we have
L Om@ IO BB 0 o AleynA  AN@nBENA "
(¢un BH 7 (31 7)1 3H B)° YA A
47.B Appendix: Equivalence Between Maximum SNR
and LCMV Beamformers
The LCMV beamformer is given by Al A
H -1 = — (47.82)
LOMY _ (pssAAH +Dyy) A (47.81) 1+ ¢ AHD A
S  AH(pAAH £ Byy) A ’
=1 (¢ss +®@yN) Similarly, we have in the numerator
=z Using the matrix inversion lemma we have in the de-
= nominator (pssAAT + ‘PNN)_IA
. —1 -1 Hg—!
=2 A (<I>NN +¢SSAAH) A e la PssPyyAAT Py A
—1 4 AHg—! 1+ AT @y A
_AH (¢! PssPyyAAT RNy —1 Hg 1
= NN~ . aHa—l 4 _ OyNA(l+ AT Dy A)
1+ ¢sANPy A = ;
1 4 4Hg—1 1+ ¢ AH® A
Hg—! 1 Pss PynAAT @y -1 Hg—!
=A"PyNA-A — Pss @y yAAT D VA
1+ ¢ AH® VA - -
Heol 02 1+ AH® VA
Hg—! (A <I’NNA) -1
=A" O NA— s T aHa—1 1 PynA
1+ ¢ AH® LA = - (47.83)
Ss NN 1+¢ssAH<I)N11VA
_ (L+guatoyya) (4" oy y4)
= " +¢ssAH‘I’Xr1lvA Dividing (47.B3) by (47.B2) we have
H —1 2 —1
— dss(A Dy A) WLCMV _ PynA — WMSNR (47.B4)
1+ ¢ AH® LA AH® 1A
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