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ABSTRACT
In this paper, we introduce an explicit representation of
linear time-invariant system in the discrete-time wavelet
transform (DTWT) domain. It is shown that crossband fil-
ters between subbands are required for perfect represen-
tation of the system. These filters depend on the DTWT
parameters and on the system impulse response, and are
shown to be time-varying. An approximate representation
based on band-to-band filters without crossband filters is
employed for system identification in the wavelet domain.
We show that for longer and stronger input signals, longer
band-to-band filters may be estimated. Experimental re-
sults validate the theoretical analysis and demonstrate the
proposed system identification approach.

KEY WORDS
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form.

1 Introduction

Time-frequency domain is often more advantageous than
time domain for linear time-invariant (LTI) system identifi-
cation, mainly due to the lower computational complexity
and faster convergence rate [1]. However, time-frequency
techniques generally produce aliasing effects, which neces-
sitate crossband filters between the subbands [1, 2]. The
influence of these crossband filters on a system identifier
implemented in the short-time Fourier transform (STFT)
domain has been recently investigated [2], and explicit ex-
pressions for the STFT representation of LTI systems have
been derived.

In contrast to the fixed time-frequency resolution of
the STFT, the wavelet transform provides good localiza-
tion both in frequency and time domains, and, as such, has
attracted significant research in system identification and
subband filtering [3, 4, 5]. In [3], the nonuniform filter
banks interpretation of the discrete-time wavelet transform
(DTWT) is used to perform linear filtering by directly con-
volving the subband signals and combining the results. In
another scheme [4], it was shown that the DTWT of the
system output signal can be computed by a weighted com-
bination of the DTWT of shifted versions of the input sig-
nal. The use of the undecimated DTWT, which is linear and
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Figure 1. System identification scheme in the DTWT do-
main. The unknown system a(n) is modeled by the block
Â in the DTWT domain.

shift invariant, was introduced in [5] to overcome the lack
of shift invariance and to implement time-domain convolu-
tion. However, none of the existing approaches provides an
explicit representation of the system in the DTWT domain.
A typical system identification scheme in the DTWT do-
main is illustrated in Fig. 1, where the block Â represents
the DTWT model of the system.

In this paper, we represent LTI systems in the DTWT
domain and show that crossband filters between subbands
are necessary for perfect representation. We derive rela-
tions between the crossband filters in the DTWT domain
and the impulse response in the time domain. In contrast
to the time-invariance property of the crossband filters in
the STFT domain [2], the crossband filters in the DTWT
domain are shown to be time-varying, due to nonuniform
decimation factor over frequency-bands. Nonetheless, the
band-to-band filters (i.e., the filters that relate identical
frequency-bands of input and output signals) remain time
invariant. Furthermore, we show that under certain condi-
tions, system representation in the DTWT domain can be
approximated with only band-to-band filters. We show that
as the signal-to-noise ratio (SNR) increases, or as more in-
put data is available, longer band-to-band filters may be es-
timated to achieve the minimal mean-square error (MSE).
Experimental results are provided to support the theoretical
analysis.

The paper is organized as follows. In Section 2,
we briefly review the DTWT. In Section 3, we derive ex-
plicit expressions for the representation of LTI systems in



the DTWT domain. In Section 4, we consider an offline
system identification in the DTWT domain using a least
squares (LS) optimization criterion. Finally, in Section
5, we present simulation results to validate the theoretical
analysis.

2 The discrete wavelet transform

In this section, we introduce the DTWT and relate it to
nonuniform filter banks (for further details, see e.g., [6] and
the references therein).

Let x(n) ∈ `2 (Z) denote a discrete-time signal, and
let xp,k be the N -level wavelet coefficients at frequency-
band k (0 ≤ k ≤ N ) and at frame index p. The DTWT
is commonly interpreted as a tree structured filter bank.
Specifically, the N -level wavelet decomposition of x(n)
uses a low-pass filter h(n) and a high-pass filter g(n) to
split the original space in two. One of the resulting half
spaces is then divided in two, etc., such that the signal is
decomposed into N + 1 adjacent octave bands1. Similarly,
the inverse DTWT (IDTWT), i.e., reconstruction of x(n)
from its DTWT representation xp,k, has also a tree struc-
ture with synthesis low-pass filter h̄(n) and high-pass fil-
ter ḡ(n). In order to perfectly recovered x(n) from xp,k,
the analysis and synthesis filters must satisfy perfect recon-
struction constraints [6].

The DTWT is closely related to nonuniform filter
banks, and these relations have been studied extensively
(e.g., [6]). In particular, we consider a decomposition of
the signal x(n) by using the nonuniform filter bank as il-
lustrated in Fig. 2(a). By nonuniform we mean that the
analysis filters have nonuniform bandwidths and that they
are followed by an unequal decimation factor 2k+1. Let
H(z) be the z-transform of the low-pass filter h(n), and let
G(z), H̄(z) and Ḡ(z) be defined similarly. Then, using the
”Nobel identities” [7], it is easy to verify that the analysis
filters Hk(z) are given by

Hk(z) =





G (z) ; k = 0

G
(
z2k

) k−1∏
i=0

H
(
z2i

)
; k = 1, ..., N − 1

k−1∏
i=0

H
(
z2i

)
; k = N

(1)
Similarly, the inverse wavelet transform can be represented
in terms of a synthesis (nonuniform) filter bank, as shown
in Fig. 2(b). The synthesis filters Fk(z) are given by

Fk(z) =





Ḡ (z) ; k = 0

Ḡ
(
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(
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)
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(
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)
; k = N

(2)
Considering the nonuniform filter bank representa-

tion of the DTWT, the wavelet coefficients xp,k at each
1Note that low values of k correspond to high frequency range.
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Figure 2. (a) Analysis and (b) synthesis nonuniform filter
bank interpretation of the DTWT.

frequency-band k, can be expressed as

xp,k =
{ ∑

m x(m)hk

(
2k+1p−m

)
; k = 0, ..., N − 1∑

m x(m)hk

(
2Np−m

)
; k = N

(3)
where hk (n) is the inverse z-transform of Hk(z). Sim-
ilarly, the reconstruction of x(n) from its wavelet coeffi-
cients xp,k can be written as

x(n) =
N−1∑

k=0

∑
p

xp,k fk

(
n− 2k+1p

)

+
∑

p

xN,p fN

(
n− 2Np

)
, (4)

where fk (n) is the inverse z-transform of Fk(z). Let us
define ψ̃p,k(n) and ψp,k(n), as

ψ̃p,k(n) =
{

h̃k

(
n− 2k+1p

)
; k = 0, 1, ..., N − 1

h̃k

(
n− 2Np

)
; k = N

(5)
and

ψp,k(n) =
{

fk

(
n− 2k+1p

)
; k = 0, 1, ..., N − 1

fk

(
n− 2Np

)
; k = N

(6)
where h̃k (n) , hk (−n). Using (5) and (6), the DTWT
and IDTWT of x(n) can be written, respectively, as

xp,k =
∑
m

x(m)ψ̃∗p,k(m) (7)

and

x(n) =
∑

p

N∑

k=0

xp,k ψp,k(n) , (8)

where ∗ denotes complex conjugation. Here ψp,k(n) are
the wavelet basis functions, and the weights xp,k are the
wavelet coefficients of x(n) with respect to the above ba-
sis. Expressions (7)-(8) represent the DTWT and IDTWT
of a discrete signal x(n) in terms of basis functions, and



will be used in the following sections for deriving an ex-
plicit representation of an LTI system in the DTWT do-
main. It is worth noting that when orthonormal basis func-
tions are considered, the analysis and synthesis filters sat-
isfy fk (n) = h∗k (−n) [7].

3 Representation of LTI systems in the
DTWT domain

In this section, we derive explicit expressions for the repre-
sentation of LTI systems in the DTWT domain, and show
that crossband filters between subbands are essential for
perfect modeling of the system.

Let a(n) denote a length La impulse response of an
LTI system, whose input x(n) and output d(n) are related
by

d(n) =
La−1∑

i=0

a(i)x(n− i) . (9)

Using (7) and (9), the DTWT of d(n) can be written as

dp,k =
∑

m,`

a(`)x(m− `)ψ̃∗p,k(m) . (10)

Substituting (8) for x(n) into (10), we obtain

dp,k =
N∑

k′=0

∑

p′
xp−p′,k′ ap′,k,k′ (p) , (11)

where

ap′,k,k′(p) =
∑

m,`

ψp−p′,k′(m− l)ψ̃∗p,k(m)a(`) (12)

may be interpreted as a response to an impulse δp′,k−k′ in
the time-frequency domain (the impulse response is trans-
lation varying in both time and frequency axes). An ex-
plicit relation between the time-frequency domain impulse
response ap′,k,k′ (p) and the time-domain impulse response
a(n) is achieved by substituting (5) and (6) into (12), result-
ing in

ap′,k,k′(p) =
∑

m,`

fk′
(
m− `− 2min(k′+1,N) (p− p′)

)

× h̃k

(
m− 2min(k+1,N)p

)
a(`)

= {a(n) ∗ φk,k′(n)}|n=λk,k′ (p,p′)

, ān,k,k′ |n=λk,k′ (p,p′) (13)

where ∗ denotes convolution with respect to the time index
n,

φk,k′(n) ,
∑
m

h̃k (m) fk′(n + m) (14)

and λk,k′(p, p′) =
(
2min(k+1,N) − 2min(k′+1,N)

)
p +

2min(k′+1,N)p′. The min (·) operator is attributable to the

equal decimation factor used at the last two frequency-
bands (k = N − 1, N ). Equation (11) indicates that the
temporal signal dp,k, for a given frequency-band index k,
is related via the time-varying filters ap′,k,k′(p) to all the
frequency-bands k′ (k′ = 0, 1, . . . , N ) of the input signal
xp,k′ . We refer to ap′,k,k′(p) for k = k′ as a band-to-band
filter and for k 6= k′ as a crossband filter. The crossband
filters are used for canceling the aliasing effects caused by
the subsampling. It is worth noting that in contrast with
the STFT representation of LTI systems [2], for which the
crossband filters are time invariant, in the DTWT domain
these filters are time-varying. The time variation of the fil-
ters are represented by the dependence of the system re-
sponse ap′,k,k′ (p) on the frame index p. This dependence,
however, vanishes when k = k′, which indicates the time
invariance of the band-to-band filters ap′,k,k. The time vari-
ations of the crossband filters are a consequence of utilizing
an unequal decimation factor at each frequency-band.

The significance of the crossband filters can be well
illustrated by applying the discrete-time Fourier transform
(DTFT) to the undecimated crossband filter ān,k,k′ [defined
in (13)] with respect to the time index n:

Āk,k′(θ) =
∑

n

ān,k,k′ e
−jnθ = A(θ)Hk (θ)Fk′ (θ) ,

(15)
where A(θ), Hk (θ) and Fk′ (θ) are the DTFT of a(n),
hk(n) and fk′(n), respectively. Equation (15) implies that
the number of crossband filters required for the represen-
tation of an impulse response is mainly determined by the
analysis and synthesis filters, while the length of the cross-
band filters (with respect to the time index n) is related to
the length of the impulse response. Had both h(n) and
h̄(n) been ideal halfband low-pass filters and had g(n) and
ḡ(n) been ideal halfband high-pass filters, a perfect DTWT
representation of the system a(n) could be achieved by us-
ing just the band-to-band filter ap′,k,k, since in this case the
product of Hk (θ) and Fk′ (θ) is identically zero for k 6= k′.
However, the low-pass and high-pass filters are practically
not ideal and therefore, Āk,k′(θ) and ān,k,k′ are not zero for
k 6= k′. Figure 3 illustrates the magnitude response of a 6-
band filter bank corresponding to a 5-level wavelet decom-
position, using a Daubechies orthonormal wavelet of length
64. It can be seen that a substantial overlap exists between
the analysis filters due to the compact support of the low-
pass filter h(n). It is worth noting that since we employ
orthonormal wavelet bases [such that fk(n) = h∗k(−n)],
only the overlap between the analysis filters hk(n) is of
interest. Figure 4 illustrates the energy of the crossband
filters, defined in dB by

Ek,k′ = 10 log10

∑
n

|ān,k,k′ |2 , (16)

at the third frequency-band (k = 3), and for 5-level
Daubechies wavelet with prototype low-pass filter lengths
L = 4, 16 and 64. We use a synthetic room impulse re-
sponse a(n) of length La = 1000 based on a statistical



reverberation model, which exhibits a reverberation time
of T60 = 50 ms (for further simulation details see Sec-
tion 5). It can be seen that the energy of a crossband filter
from frequency-band k′ to frequency-band k decreases as
|k − k′| increases, since the overlap between adjacent anal-
ysis filters becomes smaller. Clearly, this overlap is deter-
mined by the compact support of the time-domain low-pass
wavelet function h(n). As L, the length of h(n), increases,
a smaller overlap is obtained and lower crossband filters
energy is achieved, as shown in Fig. 4. As a result, for
large L values, relatively few crossband filters need to be
considered in order to capture most of the energy of the
DTWT representation of a(n). We observe from Fig. 4
that for L = 64, for instance, most of the energy of ān,3,k′

is concentrated in only three filters (k′ = 2, 3 and 4). In the
following sections, for the sake of simplicity, we assume
that the analysis and synthesis filters are selective enough
so that adjacent filters have insignificant overlap with each
other, and therefore no crossband filters should be consid-
ered. Denoting by Lak

the length of the band-to-band filter
at the kth frequency-band, it is easy to verify from (13) that

Lak
=

⌈
La + Lhk

+ Lfk
− 2

2k+1

⌉
, (17)

where Lhk
and Lfk

are the length of the analysis filter
hk(n) and the synthesis filter fk(n), respectively, at the kth
frequency-band. Using (1) and (2), we obtain after some
manipulations

Lhk
= Lfk

= 2k (2L− 1)− (L− 1) (18)

which can be substituted into (17) to obtain

Lak
=

⌈
La − 2L

2min(k+1,N)

⌉
+ 2L− 1 , (19)

where L is the length of the low-pass and high-pass filters
[i.e., h(n), g(n), h̃(n) and g̃(n)]. Equation (19) indicates
that the length of the band-to-band filter at each frequency-
band decreases as k increases2, which is in contrast with the
fixed-length filters in STFT-based identification schemes
[2]. Note that in many applications, such as acoustic echo
cancellation, the length of the system impulse response is
much larger than that of the analysis/synthesis filters, such
that (19) can be approximated as

Lak
≈

⌈
La

2min(k+1,N)

⌉
. (20)

4 System identification in the DTWT domain

In this section, we consider an offline system identification
in the DTWT domain using the LS criterion for the estima-
tion of the band-to-band filter in each frequency-band.

2Note that the length of the band-to-band filter in the last frequency-
band k = N is equal to that of k = N − 1 [see (13)].
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Consider the DTWT-based system identification
scheme as illustrated in Fig. 1. The system output signal
y(n) is given by

y(n) = d(n) + ξ(n) = a(n) ∗ x(n) + ξ(n) , (21)

where a(n) is the impulse response of the unknown LTI
system, and ξ(n) is the corrupting noise signal. From (21)
and (11), the DTWT of y(n) may be written as

yp,k = dp,k + ξp,k =
N∑

k′=0

∑

p′
xp−p′,k′ ap′,k,k′ (p) + ξp,k .

(22)
Let Pk denote the number of samples in the time-trajectory
of yp,k. The subscript k in Pk indicates the unequal length
of yp,k in each frequency-band, due to the frequency-
dependent decimation factor. Then, (22) can be written in
a vector form as

yk = dk + ξk , (23)

where

yk =
[

y0,k y1,k y2,k · · · yPk−1,k

]T
(24)

represents the DTWT coefficients of the output signal in the
kth frequency-band, and the vectors dk and ξk are defined
similarly.

Let âp′,k,k be an estimate of the (time-invariant) band-
to-band filter ap′,k,k, and let d̂p,k be the resulting estimate



of dp,k, i.e.,

d̂p,k =
Lak

−1∑

p′=0

âp′,k,k xp−p′,k . (25)

We disregard the crossband filters in the identification
process, relying on the assumption that the overlap be-
tween Hk (θ) and Fk′ (θ) for k 6= k′ is small enough.
However, when the overlap is relatively large, ignor-
ing the crossband filters yields a model mismatch which
may degrade the system estimate accuracy and result
in an insufficient MSE performance. This point will
be further demonstrated in Section 5. Let âk =[

â0,k,k â1,k,k · · · âLak
−1,k,k

]T
denote the LS es-

timate of the band-to-band filter at frequency-band k:

âk = arg min
ak

‖yk −Xkak‖2

=
(
XH

k Xk

)−1
XH

k yk , (26)

where yk is defined in (24), Xk represents an Pk × Lak

Toeplitz matrix with xm−`,k being its (m, `)th term, and
XH

k Xk is assumed to be not singular. An estimate of the
desired signal in the DTWT domain, using only the band-
to-band filter, is then given by

d̂k = Xkâk = Xk

(
XH

k Xk

)−1
XH

k yk . (27)

The model defined in (25) for the system identi-
fication contains N + 1 filters, each of length Lak

=⌈
La/2min(k+1,N)

⌉
, k = 0, ..., N , resulting in La coeffi-

cients that should be estimated for identifying the impulse
response a(n) in the DTWT domain. It is well known,
however, that the optimal model order, i.e., the number
of model coefficients that should be estimated to attain the
minimum MSE (MMSE), is affected by the level of noise
in the data and the length of the observable data [8]. Here
the model order is determined by the length of the band-
to-band filters Lak

. Consequently, as the SNR increases
or as more data is employable, the optimal model order
increases, and correspondingly longer band-to-band filters
can be estimated. Note that the time-domain impulse re-
sponse length La determines the length of the band-to-band
filters in each frequency-band [see (20)]. Therefore, denot-
ing by L̂a the length of a(n) that is practically employed
for the identification process, the resulting MSE is defined
by

ε(L̂a) =
E

{(
d(n)− d̂L̂a

(n)
)2

}

E {d2(n)} , (28)

where d̂L̂a
(n) is the inverse DTWT of the estimated desired

signal d̂p,k using band-to-band filters of lengths L̂ak
=⌈

L̂a/2min(k+1,N)
⌉

. The optimal model order is therefore
given by

L̂a,opt = arg min
L̂a

ε(L̂a) . (29)

The influence of the power and length of the input signal on
the optimal model order is investigated in the next section.

5 Experimental results

In this section, we present experimental results that verify
the theoretical analysis. We use a synthetic room impulse
response a(n) based on a statistical reverberation model,
which generates a room impulse response as a realization of
a nonstationary stochastic process a(n) = u(n)β(n)e−αn,
where u(n) is a step function, β(n) is a zero-mean white
Gaussian noise and α is related to the reverberation time
T60 (the time for the reverberant sound energy to drop by
60 dB from its original value). In the following simulations,
the sampling rate is 16 kHz, the length of the impulse re-
sponse is set to 62.5 ms (La = 1000), α corresponds to
T60 = 50 ms and β(n) is unit-variance zero-mean white
Gaussian noise. We employ a 5-level Daubechies wavelet
(N = 5) of length L = 64. The input signal x(n) and
the additive noise signal ξ(n) are uncorrelated zero-mean
white Gaussian processes with variances σ2

x and σ2
ξ , re-

spectively, and the SNR is defined by σ2
x/σ2

ξ .

Figure 5 shows the MSE curves ε(L̂a) [see (28)], for
several L̂a values, as a function of the input SNR obtained
by an input signal of length 0.5 sec [Fig. 5(a)] and a longer
signal of length 2 sec [Fig. 5(b)]. It can be seen that as the
SNR increases, a lower MSE value can be obtained by uti-
lizing longer band-to-band filters (larger L̂a). We observe
that assuming the true system order (L̂a = La = 1000)
not necessarily improves the system identifier performance.
Figure 5(a) shows that when the SNR is lower than −30
dB, assuming a length of L̂a = 100 samples (= 0.1La)
yields the minimal MSE, and enables a decrease of 7 dB
in the MSE value relative to that achieved by assuming
L̂a = 1000 (true system length). When considering SNR
values higher than −30 dB, the inclusion of 300 samples
in the model (L̂a = 300) is preferable. Moreover, a com-
parison of Figs. 5(a) and (b) indicates that when the signal
length increases (while the SNR remains constant), longer
band-to-band filters should be considered in order to at-
tain the MMSE. The relatively high MSE value obtained
in this experiment is attributable to the significance over-
lap exists between adjacent filters (see Fig 3), which ne-
cessitates the estimation of crossband filters. Note that sur-
prisingly, a lower MSE is achieved for the shorter signal
[Fig. 5(a)] at high SNR values. This result, however, is
somehow misleading since the proposed model is not ac-
curate and a model mismatch is introduced by ignoring the
crossband filters. If the model was accurate and all cross-
band filters were estimated, a lower MSE would have been
achieved by increasing the signal length. As was explained
in Section 3, ignoring the crossband filters is justified by
assuming a long low-pass filter, such that the overlap be-
tween adjacent frequency-bands is negligible. To validate
this assumption, we repeat the previous experiment for sev-
eral low-pass filter lengths. Figure 6 shows the resulting
MSE curves as a function of L̂a for analysis Daubechies
low-pass filter of lengths L = 4, 8, 16 and 32, obtained for
a 25 dB SNR and a 2 sec length input signal. Indeed, a
lower MSE value is achieved with increasing L. Figure 6
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Figure 5. MSE curves as a function of the input SNR for
white Gaussian signals. (a) Signal length is 0.5 sec. (b)
Signal length is 2 sec.
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Figure 6. MSE curves as a function of L̂a for several low-
pass filter lengths (L).

also compares the Daubechies wavelet, which is associated
with minimum-phase filters, to the least asymmetry wavelet
associated with near linear-phase filters (both of length 32).
No improvement is visible by using the least asymmetry fil-
ter, which indicates that the linearity of the phase is not crit-
ical for efficiently representing an LTI system in the DTWT
domain. The representation is mainly influenced by the fil-
ter’s frequency response amplitude rather than its phase.

6 Conclusion

We have presented LTI systems in the DTWT domain, and
showed that time-varying crossband filters are required for
a perfect representation. We showed that not only do the
crossband filters vary in time but also their length changes
with frequency. When using an approximate representation
without crossband filters, the system identification perfor-
mance is greatly affected by the assumed lengths of band-
to-band filters, which are related to the SNR and length of
input signal. As the SNR or the signal length increases,

longer band-to-band filters may be estimated. Further im-
provement is obtainable by incorporating crossband filters
into the identification process. However, the time variation
of crossband filters has to be carefully considered when es-
timating these filters.
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